Skip to main content
Log in

Cyclic Pile-Soil Interaction Effects on Load-Displacement Behavior of Thermal Pile Groups in Sand

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

This paper highlights the cyclic pile-soil interactions and load-displacement behavior of thermal piles in friction and end-bearing pile groups. Numerical investigations of pile groups with different pile arrangement have been performed under equal magnitudes of mechanical and thermal loading. The concrete piles and pile cap are considered as thermo-elastic material and sand is simulated as elasto-plastic material. Parametric studies have been performed for different rigidity of end-bearing stratum and different pile cap thickness. Results are presented for base displacement-time response of piles, load-displacement response of piles, temperature evolution and thermally induced displacements in surrounding soil, vertical stresses along pile depth, and load distribution in piles through the pile cap. The results conclude that thermal piles experience increased pile head uplift in successive thermal heating cycles which is significant for the piles supported over rigid rock stratum. The thermal uplift of piles results in soil heave near the pile-soil interface. The set-up of higher soil temperature after cyclic heating and cooling of the piles is also noted. Cyclic thermal interactions among thermal piles and surrounding soil induce variations in load-displacement pattern of these piles which need consideration for ensuring structural safety requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abaqus/Standard User’s Manual, Version 6.14 (2014) Dassault Systèmes Simulia Corporation. Provid. Rhode Island USA

  • Abdelaziz S, Ozudogru YT (2016) Non-uniform thermal strains and stresses in energy piles. Energy Geotech 3(2):237–252

    Article  Google Scholar 

  • Adinolfi M, Maiorano RMS, Mauro A, Massarotti N, Aversa S (2018) On the influence of thermal cycles on the yearly performance of an energy pile. Geomech Energy Environ 16:32–44. https://doi.org/10.1016/j.gete.2018.03.004

    Article  Google Scholar 

  • Aiban SA (1998) The effect of temperature on the engineering properties of oil-contaminated sands. Environ Int 24:153–161

    Article  Google Scholar 

  • Akrouch AG, Sanchez M, Briaud J (2014) Thermo-mechanical behavior of energy piles in high plasticity clay. Acta Geotech 9:399–412. https://doi.org/10.1007/s11440-014-0312-5

    Article  Google Scholar 

  • Batini N, Rotta Loria AF, Conti P, Testi D, Grassi W, Laloui L (2015) Energy and geotechnical behaviour of energy piles for different design solutions. Appl Therm Eng 86(1):199–213

    Article  Google Scholar 

  • Bouazza A, Adam D (2012) Turning geostructures into sources of renewable energy. In: Proceedings of ANZ 2012 conference, pp 1051–1056

  • Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248. https://doi.org/10.1680/geot.2009.59.3.237

    Article  Google Scholar 

  • Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  • Brettmann T, Amis T (2011) Thermal conductivity evaluation of a pile group using geothermal energy piles. In: Proceedings of geo-frontiers 2011. American Society of Civil Engineers, New York, pp 499–508

  • De Moel M, Bach PM, Bouazza A, Rao RM, Sun JO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energ Rev 14:2683–2696

    Article  Google Scholar 

  • Di Donna A, Rotta Loria AF, Laloui L (2016) Numerical study on the response of a group of energy piles under different combinations of thermo-mechanical loads. Comput Geotech 72(1):126–142

    Article  Google Scholar 

  • Dupray F, Laloui L, Kazangba A (2014) Numerical analysis of seasonal heat storage in an energy pile foundation. Comput Geotech 55:67–77

    Article  Google Scholar 

  • Goode JC III, McCartney JS (2015) Centrifuge modelling of end-restraint effects in energy foundations. J Geotech Geoenviron Eng 141(8):04015034

    Article  Google Scholar 

  • Goode III JC, Zhang M, McCartney JS (2014) Centrifuge modeling of energy foundations in sand. Physical modeling in geotechnics. In: Proceedings of 8th international conference on physical modelling in geotechnics, Perth, Australia, 14–17 January. Taylor and Francis, London, pp 729–736

  • Jeong S, Lim H, Lee KJ, Kim J (2014) Thermally induced mechanical response of energy piles an axially loaded pile groups. Appl Therm Eng 71:608–615

    Article  Google Scholar 

  • Kalantidou A, Tang AM, Pereira J, Hassen G (2012) Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique 62(11):1047–1051

    Article  Google Scholar 

  • Kramer CA, Basu P (2014) Performance of a model geothermal pile in sand. In: Proceedings of 8th international conference on physical modelling in geotechnics. CRC Press, Boca Raton, FL, USA, pp 771–777

  • Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behavior of a heat exchanger pile. Int J Numer Anal Meth Geomech 30:763–781

    Article  Google Scholar 

  • Liu H, Wang C, Kong G, Bouazza A (2018) Ultimate bearing capacity of energy piles in dry and saturated sand. Acta Geotech 14:869–879. https://doi.org/10.1007/s11440-018-0661-6

    Article  Google Scholar 

  • McCartney SJ (2011) Engineering performance of energy foundations. In: Proceedings of Pan-Am CGS geotechnical conference. Toronto, Canada, 2–6 October, 2011

  • McCartney JS, Murphy KD (2012) Strain distribution in full-scale energy foundations. DFI J 6(2):26–38

    Article  Google Scholar 

  • McCartney JS, Rosenberg JE (2011) Impact of heat exchange on the axial capacity of thermo-active foundations. In: Proceedings of geofrontiers 2011 conference, Dallas, TX, pp 488–498

  • Mimouni T, Laloui L (2014) Towards a secure basis for design of geothermal piles. Acta Geotech 9(3):355–366

    Article  Google Scholar 

  • Mimouni T, Laloui L (2015) Behaviour of group of energy piles. Can Geotech J 52:1913–1929

    Article  Google Scholar 

  • Murphy DK, McCartney SJ, Henry SK (2014) Thermo-mechanical characterization of a full-scale energy foundation. In: Proceedings of from soil behavior fundamentals to innovations in geotechnical engineering, geo congress 2014, Atlanta, 23–26 February 2014, pp 617–628

  • Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10(2):1–17

    Article  Google Scholar 

  • Murthy TG, Loukidis D, Carraro JAH, Prezzi M, Salgado R (2006) Undrained monotonic response of clean and silty sands. Géotechnique 57(3):273–288

    Article  Google Scholar 

  • Ng CWW, Shi C, Gunawan A, Laloui L, Liu H (2015) Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can Geotech J 52(8):1045–1057

    Article  Google Scholar 

  • Ng CWW, Gunawan A, Shi C, Ma Q, Liu H (2016) Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: a comparative study. Géotech Lett 6(1):34–38

    Article  Google Scholar 

  • Nguyen VT, Tang AM, Pereira JM (2017) Long-term thermomechanical behavior of energy pile in dry sand. Acta Geotech 12(4):729–737

    Article  Google Scholar 

  • Rotta Loria AF, Laloui L (2016) The interaction factor method for energy pile groups. Comput Geotech 80:121–137

    Article  Google Scholar 

  • Rotta Loria AF, Laloui L (2017) Thermally induced group effects among energy piles. Géotechnique 67(5):374–393

    Article  Google Scholar 

  • Rotta Loria AF, Gunawan A, Shi C, Laloui L, Ng CWW (2015a) Numerical modeling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomech Energy Environ 1(1):1–15

    Article  Google Scholar 

  • Rotta Loria AF, Di Donna A, Laloui L (2015b) Numerical study on suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001318

    Article  Google Scholar 

  • Rui Y, Soga K (2019) Thermo-hydro-mechanical coupling analysis of a thermal pile. Proc Inst Civ Eng-Geotech Eng 172(2):155–173. https://doi.org/10.1680/jgeen.16.00133

    Article  Google Scholar 

  • Saada RA, Bonnet G, Bouvard D (1996) Thermomechanical behavior of casting sands: experiments and elastoplastic modeling. Int J Plast 12(3):273–294

    Article  Google Scholar 

  • Saggu R (2019) Base displacement response of group of geothermal energy piles. Energy geotechnics. Springer, New York, pp 192–202

    Chapter  Google Scholar 

  • Saggu R, Chakraborty T (2015a) Thermal analysis of energy piles in sand. Geomech Geoeng Int J 10(1):10–29. https://doi.org/10.1080/17486025.2014.923586

    Article  Google Scholar 

  • Saggu R, Chakraborty T (2015b) Cyclic thermo-mechanical analysis of energy piles in sand. Geotech Geol Eng 33(2):321–342. https://doi.org/10.1007/s10706-014-9798-8

    Article  Google Scholar 

  • Saggu R, Chakraborty T (2016) Thermo-mechanical response of geothermal energy pile group in sand. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000567

    Article  Google Scholar 

  • Saggu R, Chakraborty T (2017) Thermo-mechanical response of geothermal energy piles in sand and parametric study. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000962

    Article  Google Scholar 

  • Salciarini D, Ronchi F, Cattoni E, Tamagnini C (2013) Thermomechanical effects induced by energy piles operation in a small piled raft. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000375

    Article  Google Scholar 

  • Salciarini D, Ronchi F, Tamagnini C (2017) Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study. Acta Geotech 12:703–728. https://doi.org/10.1007/s11440-017-0551-3

    Article  Google Scholar 

  • Sarma K, Saggu R (2020) Implications of thermal cyclic loading on pile group behaviour. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002363

    Article  Google Scholar 

  • Stewart MA, Mc Cartney JS (2014) Centrifuge modeling of soil-structure interaction in energy foundations. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061

    Article  Google Scholar 

  • Sun Q, Chen S, Gao Q, Zhang W, Geng J, Zhang Y (2017) Analysis of the factors influencing sandstone thermal conductivity. Acta Geodyn Et Geomater 14(2):173–180

    Article  Google Scholar 

  • Sutman M, Olgun CG, Brettman T (2015) Full scale field testing of energy piles. In: Proceedings of IFCEE 2015 conference, pp 1638–1643

  • Tarnawski VR, Momose T, Leong WH, Bovesecchi G, Coppa P (2009) Thermal conductivity of standard sands. Part I. Dry state conditions. Int J Thermophys 30(3):949–968

    Article  Google Scholar 

  • Wang B, Bouazza A, Singh RM, Haberfield C, Barry-Macaulay D, Baycan S (2015) Post temperature effects on shaft capacity of a full-scale geothermal energy pile. J Geotech Geoenviron Eng 141(4):04014125

    Article  Google Scholar 

  • Xu H, Zhou W, Xie R, Da L, Xiao C, Shan Y, Zhang H (2016) Characterization of rock material properties using lab tests and numerical interpretation model of well logs. Math Prob Eng 5:1–13. https://doi.org/10.1155/2016/5967159

    Article  Google Scholar 

  • Yavari N, Tang AM, Pereira JM, Hassen G (2014) Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech 9(3):385–398

    Article  Google Scholar 

  • You S, Cheng X, Guo H, Yao Z (2016) Experimental study on structural response of CFG energy piles. Appl Therm Eng 96(1):640–651

    Article  Google Scholar 

  • Yu HS (2006) Plasticity and geotechnics. Springer, New York

    Google Scholar 

Download references

Aknowledgements

The author acknowledges the financial support (Sanction no. TMD/CERI/BEE/2016/072(G)) provided by Department of Science and Technology (DST), Ministry of Science and Technology, Govt. of India, New Delhi to accomplish objectives of the research work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Saggu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggu, R. Cyclic Pile-Soil Interaction Effects on Load-Displacement Behavior of Thermal Pile Groups in Sand. Geotech Geol Eng 40, 647–661 (2022). https://doi.org/10.1007/s10706-021-01912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-021-01912-x

Keywords

Navigation