Skip to main content

Advertisement

Log in

Cyclic Thermo-Mechanical Analysis of Energy Piles in Sand

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Geothermal energy piles in sand subjected to cyclic thermal loading with fifty thermal cycles and constant mechanical axial load are analyzed numerically in the present work using the nonlinear transient finite element analysis method. The resulting soil–structure interaction is investigated through these analyses. The stress–strain response of sand is simulated herein using the Mohr–Coulomb constitutive model. Mechanical behavior of energy piles is simulated using the concrete damage plasticity model. Analyses are carried out for floating and end bearing piles in both loose and dense sands subjected to different constant axial load magnitudes at the pile head. Parametric sensitivity studies are performed for different amounts of temperature variation on the pile. It is observed from the results that the mechanical load governs the response of the piles when the piles are subjected to higher mechanical loads close to the limit load value on the pile. However, at low to moderate axial load magnitudes, thermal expansion of the pile causes uplift of the piles. Due to pile uplift, negative shear forces are generated at the pile–soil interface near pile head. The radial strains induced in the pile due to thermo-mechanical loading are observed to be higher than that induced due to only mechanical loading. The axial stress in the piles also increases when pile is subjected to heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abaqus/Standard User’s Manual, Version 6.11 (2011) Dassault Systèmes Simulia Corporation, Providence, Rhode Island, USA

  • Akrouch G, Sanchez M, Briaud JL (2014) Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech. doi:10.1007/s11440-014-0312-5

  • Amatya BL, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  • Arson C, Berns E, Akrouch G, Sanchez M, Briaud JL (2013) Heat propagation around geothermal piles and implications on energy balance, energy book series—volume # 1: materials and processes for energy: communicating current research and technological developments. In: Méndez-Vilas A (ed) Formatex Research Center, ISBN(13): 978-84-939843-7-3, 628–635

  • Boënnec O (2009) Piling on the energy. Geodrilling Int 150(2009):25–28

  • Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248. doi:10.1680/geot.2009.59.3.237

    Article  Google Scholar 

  • Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  • Das BM (2013) Principles of geotechnical engineering, 6th edn. Cengage Learning, Boston

    Google Scholar 

  • Davisson QT, Manuel FS, Armstrong RM (1983) Allowable stresses in piles. Report for Federal Highway Administration, Report No. FHWA/RD-83/059, 1983

  • De Moel M, Bach PM, Bouazza A, Rao RM, Sun JO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energy Rev 14:2683–2696

    Article  Google Scholar 

  • Di Donna A, Laloui L (2013) Advancements in geotechnical design of energy piles. International Workshop on Geomechanics and Energy—The Ground as Energy Source and Storage, Lausanne, Switzerland, 26–28 November 2013. doi:10.3997/2214-4609.20131946

  • Feda J (1984) K 0 coefficient of sand in triaxial apparatus. J Geotech Eng ASCE 110(4):519–524

    Article  Google Scholar 

  • Fromentin A, Pahud D, Laloui L, Moreni M, Kapp C (1998) Pieux échangeurs-QN EPFL; Élude préliminaire de faisabilité technique et économique. LMS SY40-LASEN 120-108. EPFL

  • Ghesami-Fare O, Basu P (2013) A practical heat transfer model for geothermal piles. Energy Build 66:470–479

    Article  Google Scholar 

  • Goode JC III, Zhang M, McCartney JS (2014) Centrifuge modeling of energy foundations in sand. In: Gaudin C, White D (eds) Physical Modeling in Geotechnics: proceedings of the 8th international conference on physical modelling in geotechnics. Perth, Australia, 14–17 January. Taylor and Francis, London, 729–736

  • GSHP Association (2012) Thermal pile design, installation and materials standards. Ground Source Heat Pump Association, National Energy Centre, Davy Avenue, Knowlhill, Milton Keynes, MK5 8NG

  • Hanna A, Al-Romhein R (2008) At-rest earth pressure of over-consolidated cohesionless soil. J Geotech Geoenviron Eng ASCE 134(3):408–412

    Article  Google Scholar 

  • Kalantidou A, Tang M, Pereira J, Hassen G (2013) Preliminary study on the mechanical behavior of heat exchanger pile in physical model. Geotechnique 62(11):1047–1051

    Article  Google Scholar 

  • Knellwolf C, Peron H, Laloui L (2011) Geotechnical analysis of heat exchanger piles. J Geotechn Geoenviron Eng 137(10):890–902

    Article  Google Scholar 

  • Laloui L, Moreni M, Vulliet L (2003) Comportement d’un pieu bi-fonction, fondation et e´changeur de chaleur. Can Geotech J 40(2):388–402

    Article  Google Scholar 

  • Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30:763–781

    Article  Google Scholar 

  • Loukidis D, Salgado R (2008) Analysis of shaft resistance of non-displacement piles in sand. Geotechnique 58(4):283–296. doi:10.1680/geot.2008.58.4.283

    Article  Google Scholar 

  • Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Massarsch KR, Fellenius BH (2002) Vibratory compaction of coarse-grained soils. Can Geotech J 39(3):695–709

    Article  Google Scholar 

  • Mayne PW, Kulhawy FH (1982) K 0-OCR relationships in soil. J Geotechn Eng ASCE 108(6):851–872

    Google Scholar 

  • McCartney SJ, Murphy DK (2012) Strain distribution in full-scale energy foundations. DFI J 6(2):26–38

    Google Scholar 

  • McCartney JS, Rosenberg JE (2011) Impact of heat exchange on the axial capacity of thermo-active foundations. In: Han J, Alzamora DE (eds) Proceedings of geo-frontiers 2011 (GSP 211). ASCE, Reston, VA, 488–498

  • McCartney JS, Rosenberg JE, Sultanova A (2010) Engineering performance of thermo-active foundation systems. In: Goss CM, Kerrigan JB, Malamo J, McCarron MO, Wiltshire RL (eds) GeoTrends: the Progress of Geological and Geotechnical Engineering in Colorado at the Cusp of a New Decade (GPP 6), 27–42

  • McCartney JS, Murphy JS, Stewart MA (2013) Thermo-mechanical behavior of energy foundations. In: Proceedings of 18th international conference on soil mechanics and geotechnical engineering, Paris, 3379–3382

  • Mimouni T, Laloui L (2013a) Full-scale in situ testing of energy piles. In: Laloui L, Di Donna A (eds) Energy Geostructures: Innovations in underground engineering. Wiley-ISTE pp 23–42

  • Mimouni T, Laloui L (2013b) Thermo-pile: a numerical tool for the design of energy piles. In: Laloui L, Di Donna A (eds) Energy Geostructures: Innovations in underground engineering. Wiley-ISTE pp 265–278

  • Salgado R (2008) Engineering of foundations. McGraw-Hill, New York

    Google Scholar 

  • Schnaid F, Houlsby GT (1991) Measurement of the properties of sand in a calibration chamber by the cone pressuremeter test. Geotechnique 42(4):587–601

    Article  Google Scholar 

  • Stewart M, McCartney J (2014) Centrifuge modeling of soil–structure interaction in energy foundations. J Geotechn Geoenviron Eng ASCE 140(4):04013044

    Article  Google Scholar 

  • Tiwari R, Jain S, Chakraborty T, Matsagar V (2012) Dynamic response of reinforced concrete sacrificial walls under blast loading. In: Proceedings of the 10th world congress on computational mechanics (WCCM 2012), São Paulo, Brazil, July 8–13, 2012

  • Wang B, Bouazza A, Haberfield C (2011) Preliminary observations from laboratory scale model geothermal pile subjected to thermo-mechanical loading. Geo-Frontiers ASCE, Dallas, Texas, March 13–16, 430–439

  • Wang W, Regueiro R, Stewart MA, McCartney JS (2012) Coupled thermo-poro-mechanical finite element analysis of a heated single pile centrifuge experiment in saturated silt. In: Hryciw RD, Athanasopoulos-Zekkos A, Yesiller N (eds) Proceedings of GeoCongress 2012 (GSP 225). ASCE, 4406–4415

  • Wang W, Regueiro RA, McCartney JS (2014) Coupled axisymmetric thermo-poro-mechanical finite element analysis of an energy foundation centrifuge experiment in partially saturated silt. In: Abu-Farsakh M, Hoyos L (eds) Proceedings of GeoCongress 2014 (GSP 234), ASCE, 2675–2684

Download references

Acknowledgments

The authors acknowledge the financial support provided by Science and Engineering Research Council (SERC), Department of Science and Technology (DST), Government of India for carrying out the work reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanusree Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggu, R., Chakraborty, T. Cyclic Thermo-Mechanical Analysis of Energy Piles in Sand. Geotech Geol Eng 33, 321–342 (2015). https://doi.org/10.1007/s10706-014-9798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-014-9798-8

Keywords

Navigation