Skip to main content
Log in

Theory of dynamic crack branching in brittle materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The problem of dynamic symmetric branching of a tensile crack propagating in a brittle material is studied within Linear Elastic Fracture Mechanics theory. The Griffith energy criterion and the principle of local symmetry provide necessary conditions for the onset of dynamic branching instability and for the subsequent paths of the branches. The theory predicts a critical velocity for branching and a well defined shape described by a branching angle and a curvature of the side branches. The model rests on a scenario of crack branching based on reasonable assumptions and on exact dynamic results for the anti-plane branching problem. Our results reproduce within a simplified 2D continuum mechanics approach the main experimental features of the branching instability of fast cracks in brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adda-Bedia M, Pomeau Y (1995) Crack instabilities of a heated glass strip. Phys Rev E 52:4105–4113

    Article  ADS  Google Scholar 

  • Adda-Bedia M, Ben-Amar M (1996) Stability of quasi-equilibrium cracks under Mode I loading. Phys Rev Lett 76:1497–1500

    Article  ADS  Google Scholar 

  • Adda-Bedia M, Arias R, Ben-Amar M, Lund F (1999) Generalized Griffith criterion for dynamic fracture and the stability of crack motion at high velocities. Phys Rev E 60:2366–2376

    Article  ADS  Google Scholar 

  • Adda-Bedia M, Arias R (2003) Brittle fracture dynamics with arbitrary paths-I. Dynamic crack kinking under general antiplane loading. J Mech Phys Solids 51:1287–1304

    Article  MATH  ADS  Google Scholar 

  • Adda-Bedia M (2004a) Brittle fracture dynamics with arbitrary paths-II. Dynamic crack branching under general antiplane loading. J Mech Phys Solids 52:1407–1420

    Article  MATH  ADS  Google Scholar 

  • Adda-Bedia M (2004b) Path prediction of kinked and branched cracks in plane situations. Phys Rev Lett 93:185502

    Article  ADS  Google Scholar 

  • Adda-Bedia M (2005) Brittle fracture dynamics with arbitrary paths-III. The branching instability under general loading. J Mech Phys Solids 53:227–248

    Article  MATH  ADS  Google Scholar 

  • Amestoy M, Leblond JB (1992) Crack paths in plane situations-II. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29:465–501

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson H (1969) Stress intensity factors at the tips of of a star-shaped contour in infinite tensile sheet. J Mech Phys Solids 17:405–414. Erratum. (1970) 18, 437

    Google Scholar 

  • Baker GA Jr (1975) Essentials of padé approximants in theoretical physics. Academic Press, New York

    Google Scholar 

  • Bouchbinder E, Hentschel HGE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 71:056118

    Article  ADS  Google Scholar 

  • Bouchbinder E, Mathiesen J, Procaccia I (2005) Branching instabilities in rapid fracture: Dynamics and geometry. Phys Rev E 68:036601

    Article  ADS  MathSciNet  Google Scholar 

  • Boudet JF, Ciliberto S, Steinberg V (1996) Dynamics of crack propagation in brittle materials. J de Physique II 6:1493–1516

    Article  ADS  Google Scholar 

  • Boudet JF, Ciliberto S (2000) Interaction of sound with fast crack propagation: an equation of motion for the crack tip. Physica D 142:317–345

    Article  MATH  ADS  Google Scholar 

  • Broberg KB (1999) Cracks and fracture. Academic Press, London.

    Google Scholar 

  • Erdogan G, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527

    Google Scholar 

  • Eshelby JD (1970) Energy relations and the energy–momentum tensor in continuum mechanics. In: Kanninen MF, Adler WF, Rosenfield AR, Jaffee RI (eds) Inelastic behaviour of solids. McGraw-Hill, New York, pp 77–115

  • Fineberg J, Gross SP, Marder M, Swinney HL (1992) Instability in the propagation of fast cracks. Phys Rev B 45:5146–5154

    Article  ADS  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fracture 10:507–523

    Article  Google Scholar 

  • Griffith AA (1920) The phenomenon of rupture and flow in solids. Philos Trans Roy Soc A 221:163–198

    ADS  Google Scholar 

  • Gross SP, Fineberg J, Marder M, McCormick WD, Swinney HL (1993) Acoustic emission in dynamic fracture. Phys Rev Lett 71:3162–3165

    Article  ADS  Google Scholar 

  • Isida M, Noguchi H (1992) Stress intensity factors at tips of branched cracks under various loadings. Int J Fracture 54:293–316

    Article  ADS  Google Scholar 

  • Karihaloo BL, Keer LM, Nemat-Nasser S, Oranratnachai A (1981) Approximate description of crack kinking and curving. J Appl Mech 48:515–519

    Article  MATH  Google Scholar 

  • Kostrov BV (1975) On the crack propagation with variable velocity. Int J Fracture 11:47–56

    Article  Google Scholar 

  • Leblond JB (1989) Crack paths in plane situations-I. General form of the expansion of the stress intensity factors. Int J Solids Struct 25:1311–1325

    Article  MATH  MathSciNet  Google Scholar 

  • Liu X, Marder M (1991) The energy of a steady state crack in a strip. J Mech Phys Solids 39:947–961

    Article  MATH  ADS  Google Scholar 

  • Livne A, Cohen G, Fineberg J (2005) Universality and hysteretic dynamics in rapid fracture. Phys Rev Lett 94:224301

    Article  ADS  Google Scholar 

  • Livne A, Ben David O, Fineberg J (2006) Oscillations in rapid fracture. Condmat/0608273

  • Marder M (2004) Effects of atoms on brittle fracture. Int J Fracture 130:517–555

    Article  Google Scholar 

  • Muskhelishvili NI (1953) Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen

    MATH  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture-III. On steady state crack propagation and crack branching. Int J Fracture 26:141–154

    Google Scholar 

  • Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasi-static crack propagation. Phys Rev Lett 75: 2352–2355

    Article  ADS  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1995) Local branching as a mechanism in dynamic fracture. Phys Rev Lett 74: 5096–5099

    Article  ADS  Google Scholar 

  • Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54:7128–7139

    Article  ADS  Google Scholar 

  • Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397:333–335

    Article  ADS  Google Scholar 

  • Smith E (1968) Crack bifurcation in brittle solids. J Mech Phys Solids 16:329–336

    Article  ADS  Google Scholar 

  • Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362:329–331

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Katzav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katzav, E., Adda-Bedia, M. & Arias, R. Theory of dynamic crack branching in brittle materials. Int J Fract 143, 245–271 (2007). https://doi.org/10.1007/s10704-007-9061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9061-x

Keywords

Navigation