Skip to main content
Log in

Fundamental Physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A survey is given of the elegant physics of N-particle systems, both classical and quantal, non-relativistic (NR) and relativistic, non-gravitational (SR) and gravitational (GR). Chapter 1 deals exclusively with NR systems; the correspondence between classical and quantal systems is highlighted and summarized in two tables of Sec. 1.3. Chapter 2 generalizes Chapter 1 to the relativistic regime, including Maxwell’s theory of electromagnetism. Chapter 3 follows Einstein in allowing gravity to curve the spacetime arena; its Sec. 3.2 is devoted to the yet missing theory of elementary particles, which should determine their properties and interactions. If completed, it would replace QFT; promising is the ‘metron’ approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barut A.O. (1988).“Quantum-electrodynamics based on self-energy”. Phys. Scripta. T21: 18–21

    Article  ADS  Google Scholar 

  • de Beauregard O.C. (1976). “Time symmetry and the interpretation of quantum mechanics”. Found. Phys. 6: 539–559

    Article  Google Scholar 

  • Bjorken J.D., Drell S.D. (1964) Relativistic Quantum Mechanics. McGraw-Hill, New York

    Google Scholar 

  • Born M., Jordan P. (1925). “Zur Quantenmechanik”. Z. Phys. 34: 858

    Article  Google Scholar 

  • Cohen E.G.D. (1961). Fundamental Problems in Statistical Mechanics. North Holland, Amsterdam

    Google Scholar 

  • De Groot S.R., Suttorp L.G. (1972). Foundations of Electrodynamics. North Holland, Amsterdam

    Google Scholar 

  • Dyson F. (1992). From Eros to Gaia. Pantheon Books, New York

    Google Scholar 

  • Ehlers J. (1973). “Survey of General Relativity Theory”. In: Israel W. (ed) Relativity, Astrophysics and Cosmology. Reidel, Dordrecht, pp. 1–125

    Google Scholar 

  • Ehlers J. (1998). “The Newtonian Limit of General Relativity”. In: Richter A.K. (ed) Understanding Physics. Copernicus Ges., Katlenburg-Lindau, pp. 1–13

    Google Scholar 

  • Ellis G. (2006). “Unburdened by proof”. Nature 443: 507–508

    Article  ADS  Google Scholar 

  • Falk, G. “Handbuch der Physik II,” in S. Flügge, ed. (Springer, Berlin, 1955), p. 32.

  • Fischer, W., Leschke, H. and Müller, P., “The Weyl–Wigner–Moyal representation,” in Understanding Physics, A. K. Richter, ed. (Copernicus Ges., Katlenburg-Lindau, 1998), pp. 79–121.

  • Gleason A.M. (1957). “Measures on the Closed Subspaces of a Hilbert Space”. J. Math. Mech. 6: 885–893

    MATH  MathSciNet  Google Scholar 

  • Hasselmann, K. “The Metron Model: elements of a unified deterministic theory of fields and particles; Parts 1–4,” Phys. Essays 9, 311–325; 460–475 (96) (1996); 10, 64–86; 269–286 (1997).

  • Hasselmann K. (1998). “The Metron Model: towards a unified deterministic theory of fields and particles”. In: Richter A.K. (ed) Understanding Physics. Copernicus Ges., Katlenburg-Lindau, pp. 154–186

    Google Scholar 

  • Hasselmann, K. and Hasselmann, S. “The Metron Model: a unified deterministic theory of fields and particles—a progress report,” in Proceedings 5th International Conference, Symmetry in Nonlinear Mathematical Physics (Institute of Mathematics of NAS of Ukraine, Kiev, 23.–29.06.2004, 2005), pp. 788–795.

  • Heusler M. (1996). Black Hole Uniqueness Theorems (Cambridge Lecture Notes) in Physics 6. University Press, Cambridge

    Google Scholar 

  • Hudson R.L. (1974). “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6: 249–252

    MATH  MathSciNet  Google Scholar 

  • Kaluza, Th. “Zum Unitätsproblem der Physik,” Sitzungsber. Preuss. Akad. Wiss., Berlin, Math.-Phys. Kl. 966–972 (1921).

  • Kane G. (1987). Modern Elementary Particle Physics. Addison-Wesley, Reading, MA, 344 pp.

    Google Scholar 

  • Klein O. (1926). “Quantentheorie und fünfdimensionale Relativitätstheorie,” Z. Phys. 37: 895– 906

    Article  Google Scholar 

  • Kundt W. (1966). “Canonical quantization of gauge-invariant field theories,” Springer Tracts in Mod. Phys. 40: 107–168

    MathSciNet  Google Scholar 

  • Kundt W. (1971). “Survey of Cosmology”. Springer Tracts in Mod. Phys. 58: 1–47

    ADS  Google Scholar 

  • Kundt W. (2005). Astrophysics, A New Approach. Springer, Berlin, 223 pp.

    Google Scholar 

  • Landau and Litshitz, Theoretical Physics (1966).

  • Leaf B. (1968). “Weyl transformation and the classical limit of quantum mechanics,” J. Math. Phys. 9: 65–72

    Article  MATH  Google Scholar 

  • Leschke, diploma thesis, Hamburg (1970).

  • Moyal J.E. (1949). “Quantum mechanics as a statistical theory,” Camb. Philos. Soc. 45: 99–124

    MATH  MathSciNet  Google Scholar 

  • Pais A. (1986). Inward Bound. Oxford University Press, Oxford

    Google Scholar 

  • Penzlin F. (1963). “Die Methode der Feynmanschen Graphen”. Fortschr. Phys. 11: 357–420

    Article  MathSciNet  Google Scholar 

  • Pool J.C.T. (1966). “Mathematical aspects of the Weyl correspondence”. J. Math. Phys. 7: 66–76

    Article  MATH  MathSciNet  Google Scholar 

  • Schleich W. (2001). Quantum Optics in Phase Space. Wiley-VCH, New York, 498 pp.

    MATH  Google Scholar 

  • Schweber S.S. (1994). QED and the Men Who Made It. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Shipsey I. (2005). “Weighty questions,” Nature 436: 186–187

    Google Scholar 

  • Weyl H. (1928). “Quantenmechanik und Gruppentheorie”. Z. Phys. 46: 1–46

    Google Scholar 

  • Wheeler J.A., Feynman R.P. (1945). “Interaction with the absorber as the mechanism of radiation”. Rev. Mod. Phys. 17: 157–181

    Article  ADS  Google Scholar 

  • Wheeler J.A., Feynman R.P. (1949). “Classical electrodynamics in terms of direct particle interaction,” Rev. Mod. Phys. 21: 425–433

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Wigner E.P. (1932). “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40: 749–759

    Article  MATH  Google Scholar 

  • Wilczek F. (2005). “In search of symmetry lost”. Nature 433: 239–247

    Article  ADS  Google Scholar 

  • Witten E. (1981). “Search for a realistic Kaluza–Klein theory”. Nucl. Phys. B186: 412–428

    Article  ADS  MathSciNet  Google Scholar 

  • Witten E. (2005). “Unravelling string theory”. Nature 438: 1085

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kundt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundt, W. Fundamental Physics. Found Phys 37, 1317–1369 (2007). https://doi.org/10.1007/s10701-007-9150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9150-8

Keywords

Navigation