Skip to main content

Quantum Gravity: The View From Particle Physics

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

This lecture reviews aspects of and prospects for progress towards a theory of quantum gravity from a particle physics perspective, also paying attention to recent findings of the LHC experiments at CERN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the possible exception of the Asymptotic Safety program [1].

  2. 2.

    As there is a vast literature on this subject, I here take the liberty of citing only a few representative introductory texts, where more references can be found.

  3. 3.

    There is no need here to distinguish between the Riemann tensor and the Weyl tensor, as all terms containing the Ricci scalar or the Ricci tensor can be absorbed into (possibly divergent) redefinitions of the metric.

  4. 4.

    The non-separability of the kinematical Hilbert space is also a crucial ingredient in proposals to resolve space-time singularities in loop quantum cosmology [13].

  5. 5.

    Of course, the biggest and most puzzling hierarchy problem concerns the smallness of the observed cosmological constant.

  6. 6.

    This option is not very popular with aficionados of the multiverse or the anthropic principle but, interestingly, the hope for a unique path from quantum gravity to the SM is also prominently visible in the very first papers on the heterotic superstring [17, 18].

  7. 7.

    Only partly, as for instance the larger part of the proton mass is due to non-perturbative QCD effects!

  8. 8.

    The two plots shown below have been downloaded from the CERN website [22] where also a summary of many further results can be found.

  9. 9.

    On this point, see also [28].

References

  1. Weinberg, S.: Living with Infinities, ArXiv e-prints 0903.0568 [hep-th] (2009)

  2. Hawking, S.W., Israel, W. (eds.): General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  3. Kiefer, C.: Quantum gravity, International Series of Monographs on Physics. Clarendon Press, Oxford (2004)

    Google Scholar 

  4. Ashtekar, A. (ed.): 100 Years of Relativity. Space-Time Structure: Einstein and Beyond. World Scientific, Singapore (2005)

    Google Scholar 

  5. Rovelli, C.: Quantum Gravity, Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  7. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 1 & 2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  8. Polchinski, J.: String Theory, vol. 1 & 2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  9. Blumenhagen, R., Lüst, D., Theisen, S.: Basic Concepts of String Theory. Theoretical and Mathematical Physics. Springer, Berlin (2012)

    Google Scholar 

  10. Goroff, M.H., Sagnotti, A.: The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709 (1986). doi:10.1016/0550-3213(86)90193-8

    Article  ADS  Google Scholar 

  11. van de Ven, A.: Two-loop quantum gravity. Nucl. Phys. B 378, 309 (1992). doi:10.1016/0550-3213(92)90011-Y

    Article  ADS  Google Scholar 

  12. Bern, Z., Carrasco, J.J., Dixon, L.J., Johansson, H., Roiban, R.: Amplitudes and ultraviolet behavior of \(N = 8\) supergravity. Fortschr. Phys. 59, 561 (2011). doi: 10.1002/prop.201100037

    Article  MATH  MathSciNet  Google Scholar 

  13. Bojowald, M.: Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). doi:10.1103/PhysRevLett. 86.5227

    Article  ADS  MathSciNet  Google Scholar 

  14. Reuter, M., Saueressig, F.: Quantum Einstein gravity. New J. Phys. 14, 055022 (2012). doi:10.1088/1367-2630/14/5/055022

  15. Applequist, T., Chodos, A., Freund, P.G.O. (eds.): Modern Kaluza-Klein Theories, Frontiers in Physics. Addison-Wesley, Reading (1987)

    Google Scholar 

  16. Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  17. Gross, D.J., Harvey, J.A., Martinec, E.J., Rohm, R.: Heterotic string. Phys. Rev. Lett. 54, 502 (1985). doi:10.1103/PhysRevLett. 54.502

    Article  ADS  MathSciNet  Google Scholar 

  18. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B B258, 46 (1985). doi:10.1016/0550-3213(85)90602-9

    Article  ADS  MathSciNet  Google Scholar 

  19. Hambye, T., Riesselmann, K.: Matching conditions and Higgs boson mass upper bounds reexamined. Phys. Rev. D 55, 7255 (1997). doi:10.1103/PhysRevD.55.7255 See also Proceedings of the ‘ECFA/DESY Study on Physics and Detectors for the Linear Collider’, DESY 97-123E, ed. R. Settles

  20. Shaposhnikov, M., Wetterich, C.: Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196 (2010). doi:10.1016/j.physletb.2009.12.022

    Article  ADS  Google Scholar 

  21. Chamseddine, A.H., Connes, A.: Resilience of the spectral standard model. J. High Energy Phys. 9, 104 (2012). doi:10.1007/JHEP09(2012) 104

    Article  ADS  MathSciNet  Google Scholar 

  22. ATLAS Physics Summary Plots. (ATLAS Experiment 2013 CERN). URL https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

  23. Coleman, S., Weinberg, E.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888 (1973). doi:10.1103/PhysRevD.7.1888

    Article  ADS  Google Scholar 

  24. Bardeen, W.A.: On naturalness in the standard model. In: FERMILAB-CONF-95-391-T, C95–08-27.3 (1995)

    Google Scholar 

  25. Meissner, K.A., Nicolai, H.: Conformal symmetry and the standard model. Phys. Lett. B 648, 312 (2007). doi:10.1016/j.physletb.2007.03.023

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Bertlmann, R.A.: Anomalies in Quantum Field Theory, International Series of Monographs on Physics. Clarendon Press, Oxford (1996)

    Google Scholar 

  27. Blau, M., Theisen, S.: String theory as a theory of quantum gravity: a status report. Gen. Relativ. Gravit. 41, 743 (2009). doi:10.1007/s10714-008-0752-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Nicolai, H., Warner, N.P.: The SU(3)\(\times \)U(1) invariant breaking of gauged \(N = 8\) supergravity. Nucl. Phys. B 259, 412 (1985). doi: 10.1016/0550-3213(85)90643-1

    Article  ADS  MathSciNet  Google Scholar 

  29. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: an outside view. Class. Quantum Gravity 22, R193 (2005). doi:10.1088/0264-9381/22/19/R01

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Alexandrov, S., Roche, P.: Critical overview of loops and foams. Phys. Rep. 506, 41 (2011). doi:10.1016/j.physrep.2011.05.002

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Jianwei Mei for his help in turning my talk into a (hopefully) readable text and Krzysztof Meissner for many enjoyable and illuminating discussions on the state of the art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Nicolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicolai, H. (2014). Quantum Gravity: The View From Particle Physics. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_18

Download citation

Publish with us

Policies and ethics