Skip to main content

Spacetime as a Quantum Many-Body System

  • Chapter
  • First Online:
Many-body Approaches at Different Scales

Abstract

Quantum gravity has become a fertile interface between gravitational physics and quantum many-body physics, with its double goal of identifying the microscopic constituents of the universe and their fundamental dynamics, and of understanding their collective properties and how spacetime and geometry themselves emerge from them at macroscopic scales. In this brief contribution, we outline the problem of quantum gravity from this emergent spacetime perspective, and discuss some examples in which ideas and methods from quantum many-body systems have found a central role in quantum gravity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Carlip, D.W. Chiou, W.T. Ni, R. Woodard, Int. J. Mod. Phys. D 24(11), 1530028 (2015). https://doi.org/10.1142/S0218271815300281

  2. C. Rovelli, in Proceedings of the 9th Marcel Grossmann Meeting (MGIX MM): On Recent Developments, in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, ed. by V.G. Gurzadyan, R.T. Jantzen, R. Ruffini (World Scientific, Singapore, 2000), pp. 742–768

    Google Scholar 

  3. D. Rickles, in Integrating History and Philosophy of Science: Problems and Prospects (Boston Studies in the Philosophy and History of Science), ed. by S. Mauskopf, T. Schmaltz (Springer, New York, 2012), chap. 11, pp. 163–199. ISBN 9789400717442, 9789400717459. https://doi.org/10.1007/978-94-007-1745-9

  4. D. Oriti (ed.), Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  5. A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 21(15), R53 (2004). https://doi.org/10.1088/0264-9381/21/15/R01

  6. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004). ISBN 9780521837330

    Book  MATH  Google Scholar 

  7. A. Ashtekar, J. Pullin, in Loop Quantum Gravity: the First 30 Years [72], chap. 1. ISBN9789813209923. https://doi.org/10.1142/10445

  8. N. Bodendorfer (2016), arXiv:1607.05129 [gr-qc]

  9. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Rep. 519(4), 127 (2012). https://doi.org/10.1016/j.physrep.2012.03.007

  10. A. Perez, Liv. Rev. Rel. 16(1), 3 (2013). https://doi.org/10.12942/lrr-2013-3

  11. D. Oriti, in Foundations of Space and Time: Reflections on Quantum Gravity, ed. by J. Murugan, A. Weltman, G.F.R. Ellis (Cambridge University Press, Cambridge, 2012), chap. 12. ISBN 9780521114400

    Google Scholar 

  12. T. Krajewski, PoS QGQGS2011, 005 (2011), Proceedings of the 3rd Quantum Gravity and Quantum Geometry School (Zakopane, Poland, February 28–March 13, 2011), arXiv:1210.6257 [gr-qc]

  13. A. Baratin, D. Oriti, J. Phys.: Conf. Ser. 360(1), 012002 (2012). https://doi.org/10.1088/1742-6596/360/1/012002

  14. D. Oriti, in Ashtekar and Pullin [72], chap. 5. ISBN9789813209923. https://doi.org/10.1142/10445

  15. F. Dowker, Gen. Relat. Gravit. 45(9), 1651 (2013). https://doi.org/10.1007/s10714-013-1569-y

  16. F. Lizzi, in Proceedings of the Workshop on Geometry, Topology, QFT and Cosmology, Paris, May 28–30,2008 (Observatoire de Paris, Paris, 2008), arXiv:0811.0268 [hep-th]

  17. S. Majid, in Oriti, [4], chap. 24, p. 466. ISBN 9780521860451

    Google Scholar 

  18. M. Niedermaier, M. Reuter, Living Rev. Relativ. 9(1), 5 (2006). https://doi.org/10.12942/lrr-2006-5

  19. K.S. Stelle, in Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, vol. 863, ed. by G. Calcagni, L. Papantonopoulos, G. Siopsis, N. Tsamis (Springer, Berlin, 2013), pp. 3–30. ISBN 978-3-642-33036-0. https://doi.org/10.1007/978-3-642-33036-0_1

  20. M. Blau, S. Theisen, Gen. Relativ. Gravit. 41(4), 743 (2009). https://doi.org/10.1007/s10714-008-0752-z

  21. S. Carlip, Int. J. Mod. Phys. D 23(11), 1430023 (2014). https://doi.org/10.1142/S0218271814300237

  22. S.D. Mathur, Class. Quantum Gravity 26(22), 224001 (2009). https://doi.org/10.1088/0264-9381/26/22/224001

  23. G. Chirco, S. Liberati, Phys. Rev. D 81, 024016 (2010). https://doi.org/10.1103/PhysRevD.81.024016

  24. T. Padmanabhan, Curr. Sci. 109, 2236 (2015). https://doi.org/10.18520/v109/i12/2236-2242

  25. L. Freidel, M. Geiller, J. Ziprick, Class. Quantum Gravity 30(8), 085013 (2013). https://doi.org/10.1088/0264-9381/30/8/085013

  26. D. Oriti, Class. Quantum Gravity 33(8), 085005 (2016). https://doi.org/10.1088/0264-9381/33/8/085005

  27. N. Seiberg, in The Quantum Structure of Space and Time, ed. by D. Gross, M. Henneaux, A. Sevrin (World Scientific, Singapore, 2007), pp. 163–213. ISBN 9789812569523. https://doi.org/10.1142/9789812706768_0005

  28. O. Hohm, D. Lüst, B. Zwiebach, Fortschr. Phys. 61(10), 926 (2013). https://doi.org/10.1002/prop.201300024

  29. D. Oriti, Stud. Hist. Philos. Sci. B 46(2), 186 (2014)

    MathSciNet  Google Scholar 

  30. K. Crowther, Appearing out of nowhere: the emergence of spacetime in quantum gravity. PhD thesis, University of Sydney (2014), arXiv:1410.0345 [physics.hist-ph]

  31. C. Barceló, S. Liberati, M. Visser, Living Rev. Relativ. 8(1), 12 (2005). https://doi.org/10.12942/lrr-2005-12

  32. S. Finazzi, S. Liberati, L. Sindoni, in Proceedings of the 2nd Amazonian Symposium on Physics (2012), arXiv:1204.3039 [gr-qc]

  33. G. Volovik, Ann. Phys. 14(1–3), 165 (2005). https://doi.org/10.1002/andp.200410123

  34. B.L. Hu, Int. J. Theor. Phys. 44(10), 1785 (2005). https://doi.org/10.1007/s10773-005-8895-0

  35. D. Oriti, PoS QG-Ph, 030 (2007), Proceedings of the Conference ‘From Quantum to Emergent Gravity: Theory and Phenomenology’ (Trieste, Italy, June 11–15 2007), arXiv:0710.3276 [gr-qc]

  36. G.T. Horowitz, J. Polchinski, in Oriti [4], chap. 10, pp. 169–186. ISBN 9780521860451

    Google Scholar 

  37. J. de Boer, in Theoretical Physics to Face the Challenge of LHC. Lecture Notes of the Les Houches Summer School, vol. 97, ed. by L. Baulieu, K. Benakli, M.R. Douglas, B. Mansoulié, E. Rabinovici, L.F. Cugliandolo (Oxford University Press, Oxford, 2015), chap. 7. ISBN 9780198727965. https://doi.org/10.1093/acprof:oso/9780198727965.003.0007

  38. J. Zaanen, Y. Liu, Y. Sun, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  39. N.H. March, G.G.N. Angilella, Exactly Solvable Models in Many-body Theory (World Scientific, Singapore, 2016)

    Book  Google Scholar 

  40. A. Kitaev, A simple model of quantum holography (2005). Talks at KITP, April 7 and May 27, 2015

    Google Scholar 

  41. R. Gurau, J.P. Ryan, SIGMA 8, 020 (2012), Contribution to the Special Issue on ‘Loop Quantum Gravity and Cosmology’, arXiv:1109.4812 [hep-th]. https://doi.org/10.3842/SIGMA.2012.020

  42. R. Gurau, SIGMA 12, 094 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1609.06439 [hep-th]. https://doi.org/10.3842/SIGMA.2016.094

  43. R. Gurau, SIGMA 12, 069 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1603.07278 [math-ph]. https://doi.org/10.3842/SIGMA.2016.069

  44. V. Bonzom, L. Lionni, A. Tanasa, J. Math. Phys. 58(5), 052301 (2017). https://doi.org/10.1063/1.4983562

  45. M. Van Raamsdonk, in New Frontiers in Fields and Strings. Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2015, Boulder, Colorado, 1–26 June 2015) (World Scientific, Singapore, 2016), chap. 5, pp. 297–351. arXiv:1609.00026 [hep-th]. https://doi.org/10.1142/9789813149441_0005

  46. C. Cao, S.M. Carroll, S. Michalakis, Phys. Rev. D 95, 024031 (2017). https://doi.org/10.1103/PhysRevD.95.024031

  47. P. Hayden, S. Nezami, X.L. Qi, N. Thomas, M. Walter, Z. Yang, J. High Energy Phys. 2016(11), 9 (2016). https://doi.org/10.1007/JHEP11(2016)009

  48. M. Van Raamsdonk, Gen. Relativ. Gravit. 42(10), 2323 (2010), Reprinted as Ref. [73]. https://doi.org/10.1007/s10714-010-1034-0

  49. E.R. Livine, D.R. Terno, Reconstructing quantum geometry from quantum information: area renormalization, coarse-graining and entanglement on spin networks (2006), arXiv:gr-qc/0603008

  50. P.A. Höhn, J. Phys.: Conf. Ser. 880(1), 012014 (2017). https://doi.org/10.1088/1742-6596/880/1/012014

  51. G. Chirco, F.M. Mele, D. Oriti, P. Vitale, Fisher metric, geometric entanglement and spin networks (2017), arXiv:1703.05231 [gr-qc]

  52. E.R. Livine, Intertwiner entanglement on spin networks (2017), arXiv:1709.08511 [gr-qc]

  53. V. Bonzom, F. Costantino, E.R. Livine, Commun. Math. Phys. 344(2), 531 (2016). https://doi.org/10.1007/s00220-015-2567-6

  54. B. Bahr, B. Dittrich, F. Hellmann, W. Kaminski, Phys. Rev. D 87, 044048 (2013). https://doi.org/10.1103/PhysRevD.87.044048

  55. B. Dittrich, F.C. Eckert, M. Martin-Benito, New J. Phys. 14(3), 035008 (2012). https://doi.org/10.1088/1367-2630/14/3/035008

  56. B. Dittrich, S. Mizera, S. Steinhaus, New J. Phys. 18(5), 053009 (2016). https://doi.org/10.1088/1367-2630/18/5/053009

  57. C. Delcamp, B. Dittrich, Towards a phase diagram for spin foams (2016), arXiv:1612.04506 [gr-qc]

  58. G. Chirco, D. Oriti, M. Zhang, Group field theory and tensor networks: towards a ryu-takayanagi formula in full quantum gravity (2017), arXiv:1701.01383 [gr-qc]

  59. M. Han, L.Y. Hung, Phys. Rev. D 95, 024011 (2017). https://doi.org/10.1103/PhysRevD.95.024011

  60. S. Carrozza, D. Oriti, V. Rivasseau, Commun. Math. Phys. 330(2), 581 (2014). https://doi.org/10.1007/s00220-014-1928-x

  61. D. Benedetti, J.B. Geloun, D. Oriti, J. High Energy Phys. 2015(3), 84 (2015). https://doi.org/10.1007/JHEP03(2015)084

  62. S. Carrozza, V. Lahoche, Class. Quantum Gravity 34(11), 115004 (2017). https://doi.org/10.1088/1361-6382/aa6d90

  63. S. Carrozza, SIGMA 12, 070 (2016), Contribution to the special issue on ‘Tensor Models, Formalism and Applications’, arXiv:1603.01902 [gr-qc]. https://doi.org/10.3842/SIGMA.2016.070

  64. S. Carrozza, V. Lahoche, D. Oriti, Phys. Rev. D 96, 066007 (2017). https://doi.org/10.1103/PhysRevD.96.066007

  65. S. Gielen, D. Oriti, L. Sindoni, Phys. Rev. Lett. 111, 031301 (2013). https://doi.org/10.1103/PhysRevLett.111.031301

  66. S. Gielen, D. Oriti, L. Sindoni, J. High Energy Phys. 2014(6), 13 (2014). https://doi.org/10.1007/JHEP06(2014)013

  67. S. Gielen, L. Sindoni, SIGMA 12, 082 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1602.08104 [gr-qc]. https://doi.org/10.3842/SIGMA.2016.082

  68. D. Oriti, Comptes Rendus Physique 18(3), 235 (2017). https://doi.org/10.1016/j.crhy.2017.02.003

  69. D. Oriti, L. Sindoni, E. Wilson-Ewing, Class. Quantum Gravity 33(22), 224001 (2016). https://doi.org/10.1088/0264-9381/33/22/224001

  70. M. de Cesare, A.G.A. Pithis, M. Sakellariadou, Phys. Rev. D 94, 064051 (2016). https://doi.org/10.1103/PhysRevD.94.064051

  71. S. Gielen, D. Oriti, Cosmological perturbations from full quantum gravity (2017), arXiv:1709.01095 [gr-qc]

  72. A. Ashtekar, J. Pullin (eds.), 100 Years of General Relativity, vol. 4 (World Scientific, Singapore, 2004). ISBN 9789813209923

    Google Scholar 

  73. M. Van Raamsdonk, Int. J. Mod. Phys. D 19(14), 2429 (2010), Reprint of Ref. [48]. https://doi.org/10.1142/S0218271810018529

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Oriti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oriti, D. (2018). Spacetime as a Quantum Many-Body System. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_29

Download citation

Publish with us

Policies and ethics