Skip to main content

Advertisement

Log in

Zebrafish xenotransplantation as a tool for in vivo cancer study

  • Review
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Zebrafish represents a powerful model for cancer research. Particularly, the xenotransplantation of human cancer cells into zebrafish has enormous potential for further evaluation of cancer progression and drug discovery. Various cancer models have been established in adults, juveniles and embryos of zebrafish. This xenotransplantation zebrafish model provides a unique opportunity to monitor cancer proliferation, tumor angiogenesis, metastasis, self-renewal of cancer stem cells, and drug response in real time in vivo. This review summarizes the use of zebrafish as a model for cancer xenotransplantation, and highlights its advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lam SH, Wu YL, Vega VB et al (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75. doi:10.1038/nbt1169

    Article  CAS  PubMed  Google Scholar 

  2. Granato M, Nusslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6(4):461–468

    Article  CAS  PubMed  Google Scholar 

  3. Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694. doi:10.1158/1541-7786.MCR-07-2167

    Article  CAS  PubMed  Google Scholar 

  4. Payne E, Look T (2009) Zebrafish modelling of leukaemias. Br J Haematol 146(3):247–256. doi:10.1111/j.1365-2141.2009.07705.x

    Article  CAS  PubMed  Google Scholar 

  5. Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4(3):189–202

    Article  CAS  PubMed  Google Scholar 

  6. Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3(7):533–539. doi:10.1038/nrc1126

    Article  CAS  PubMed  Google Scholar 

  7. Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22(9):473–478. doi:10.1016/j.tig.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  8. Soroldoni D, Hogan BM, Oates AC (2009) Simple and efficient transgenesis with meganuclease constructs in zebrafish. Methods Mol Biol 546:117–130. doi:10.1007/978-1-60327-977-2_8

    Article  CAS  PubMed  Google Scholar 

  9. Kalen M, Wallgard E, Asker N et al (2009) Combination of reverse and chemical genetic screens reveals angiogenesis inhibitors and targets. Chem Biol 16(4):432–441. doi:10.1016/j.chembiol.2009.02.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. doi:10.1038/nbt1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699–700. doi:10.1038/nbt.1939

    Article  PubMed  Google Scholar 

  12. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. doi:10.1038/nbt.2501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. White RM, Sessa A, Burke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189. doi:10.1016/j.stem.2007.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T (2014) Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS ONE 9(1):e85439. doi:10.1371/journal.pone.0085439

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Developmental Biology 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  16. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6(4):339–346. doi:10.1089/zeb.2009.0607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Moshal KS, Ferri-Lagneau KF, Leung T (2010) Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med 20(4):114–119. doi:10.1016/j.tcm.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Eguiara A, Holgado O, Beloqui I et al (2011) Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 10(21):3751–3757. doi:10.4161/cc.10.21.17921

    Article  CAS  PubMed  Google Scholar 

  19. Yang XJ, Cui W, Gu A et al (2013) A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS ONE 8(4):e61801. doi:10.1371/journal.pone.0061801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zon LI, Peterson R (2010) The new age of chemical screening in zebrafish. Zebrafish 7(1):1. doi:10.1089/zeb.2010.9996

    Article  PubMed  Google Scholar 

  21. Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR (2004) Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol 15(6):564–571. doi:10.1016/j.copbio.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  22. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 104(44):17406–17411. doi:10.1073/pnas.0703446104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang B, Shimada Y, Kuroyanagi J et al (2014) Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumour Biol 35(12):11861–11869. doi:10.1007/s13277-014-2417-8

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Alt C, Li P et al (2012) An optical platform for cell tracking in adult zebrafish. Cytometry Part A: The Journal of the International Society for Analytical Cytology 81(2):176–182. doi:10.1002/cyto.a.21167

    Article  Google Scholar 

  25. Patton EE, Mitchell DL, Nairn RS (2010) Genetic and environmental melanoma models in fish. Pigment Cell & Melanoma Research 23(3):314–337. doi:10.1111/j.1755-148X.2010.00693.x

    Article  CAS  Google Scholar 

  26. Ignatius MS, Langenau DM (2009) Zebrafish as a model for cancer self-renewal. Zebrafish 6(4):377–387. doi:10.1089/zeb.2009.0610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Goessling W, North TE, Zon LI (2007) Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nat Methods 4(7):551–553. doi:10.1038/nmeth1059

    Article  CAS  PubMed  Google Scholar 

  28. Spitsbergen J (2007) Imaging neoplasia in zebrafish. Nat Methods 4(7):548–549. doi:10.1038/nmeth0707-548

    Article  CAS  PubMed  Google Scholar 

  29. Mizgireuv IV, Revskoy SY (2006) Transplantable tumor lines generated in clonal zebrafish. Cancer Res 66(6):3120–3125. doi:10.1158/0008-5472.CAN-05-3800

    Article  CAS  PubMed  Google Scholar 

  30. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246. doi:10.1038/ni1007

    Article  CAS  PubMed  Google Scholar 

  31. Traver D, Winzeler A, Stern HM et al (2004) Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104(5):1298–1305. doi:10.1182/blood-2004-01-0100

    Article  CAS  PubMed  Google Scholar 

  32. Langenau DM, Ferrando AA, Traver D et al (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA 101(19):7369–7374. doi:10.1073/pnas.0402248101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290. doi:10.1242/dev.00733

    Article  CAS  PubMed  Google Scholar 

  34. Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520. doi:10.1038/onc.2008.95

    Article  CAS  PubMed  Google Scholar 

  35. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220. doi:10.1038/79951

    Article  CAS  PubMed  Google Scholar 

  36. Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28

    Article  CAS  PubMed  Google Scholar 

  37. Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233(4):1560–1570. doi:10.1002/dvdy.20471

    Article  CAS  PubMed  Google Scholar 

  38. Pichler FB, Laurenson S, Williams LC, Dodd A, Copp BR, Love DR (2003) Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21(8):879–883. doi:10.1038/nbt852

    Article  CAS  PubMed  Google Scholar 

  39. Funfak A, Brosing A, Brand M, Kohler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7(9):1132–1138. doi:10.1039/b701116d

    Article  CAS  PubMed  Google Scholar 

  40. Tamplin OJ, White RM, Jing L et al (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdisciplinary Reviews Developmental Biology 1(3):459–468. doi:10.1002/wdev.37

    Article  CAS  PubMed  Google Scholar 

  41. Konantz M, Balci TB, Hartwig UF et al (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137. doi:10.1111/j.1749-6632.2012.06575.x

    Article  PubMed  Google Scholar 

  42. Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151. doi:10.1007/s10456-006-9040-2

    Article  PubMed  Google Scholar 

  43. Lal S, La Du J, Tanguay RL, Greenwood JA (2012) Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res 90(4):769–781. doi:10.1002/jnr.22794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lee SL, Rouhi P, Dahl Jensen L et al (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 106(46):19485–19490. doi:10.1073/pnas.0909228106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu NA, Jiang H, Ben-Shlomo A et al (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 108(20):8414–8419. doi:10.1073/pnas.1018091108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332–2341. doi:10.1242/jcs.069443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12(4):325–338. doi:10.1007/s10456-009-9154-4

    Article  CAS  PubMed  Google Scholar 

  48. Pruvot B, Jacquel A, Droin N et al (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96(4):612–616. doi:10.3324/haematol.2010.031401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi:10.1158/0008-5472.CAN-06-4268

    Article  CAS  PubMed  Google Scholar 

  50. Rouhi P, Jensen LD, Cao Z et al (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 5(12):1911–1918. doi:10.1038/nprot.2010.150

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  52. Folkman J (1971) Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  53. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi:10.1016/j.ccr.2009.01.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental Biology 230(2):278–301. doi:10.1006/dbio.2000.9995

    Article  CAS  PubMed  Google Scholar 

  55. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923. doi:10.1038/nprot.2007.412

    Article  CAS  PubMed  Google Scholar 

  56. Kuroyanagi J, Shimada Y, Zhang B et al (2014) Zinc finger MYND-type containing 8 promotes tumour angiogenesis via induction of vascular endothelial growth factor-A expression. FEBS Lett 588(18):3409–3416. doi:10.1016/j.febslet.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  57. Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T (2011) Discriminating different cancer cells using a zebrafish in vivo assay. Cancers 3(4):4102–4113. doi:10.3390/cancers3044102

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nicoli S, Tobia C, Gualandi L, De Sena G, Presta M (2008) Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111(10):4965–4972. doi:10.1182/blood-2007-10-118166

    Article  CAS  PubMed  Google Scholar 

  59. Tobia C, Gariano G, De Sena G (1832) Presta M (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 9:1371–1377. doi:10.1016/j.bbadis.2013.01.016

    Google Scholar 

  60. Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. The International Journal of Developmental Biology 55(4–5):505–509. doi:10.1387/ijdb.103238ct

    Article  CAS  PubMed  Google Scholar 

  61. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. doi:10.1038/nrc1098

    Article  CAS  PubMed  Google Scholar 

  62. Marques IJ, Weiss FU, Vlecken DH et al (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128. doi:10.1186/1471-2407-9-128

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zhao C, Yang H, Shi H et al (2011) Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 32(8):1143–1150. doi:10.1093/carcin/bgr076

    Article  CAS  PubMed  Google Scholar 

  64. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  65. Sun S, Wang Z (2010) ALDH high adenoid cystic carcinoma cells display cancer stem cell properties and are responsible for mediating metastasis. Biochemical and Biophysical Research Communications 396(4):843–848. doi:10.1016/j.bbrc.2010.04.170

    Article  CAS  PubMed  Google Scholar 

  66. Yang LL, Wang GQ, Yang LM, Huang ZB, Zhang WQ, Yu LZ (2014) Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs. Molecules 19(2):2390–2409. doi:10.3390/molecules19022390

    Article  PubMed  Google Scholar 

  67. Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4(5):504–512. doi:10.1016/j.coph.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  68. Shimada Y, Nishimura Y, Tanaka T (2014) Zebrafish-based systems pharmacology of cancer metastasis. Methods Mol Biol 1165:223–238. doi:10.1007/978-1-4939-0856-1_15

    Article  PubMed  Google Scholar 

  69. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182. doi:10.1182/blood-2001-12-0207

    Article  CAS  PubMed  Google Scholar 

  70. Smith AC, Raimondi AR, Salthouse CD et al (2010) High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115(16):3296–3303. doi:10.1182/blood-2009-10-246488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Mizgirev I, Revskoy S (2010) Generation of clonal zebrafish lines and transplantable hepatic tumors. Nat Protoc 5(3):383–394. doi:10.1038/nprot.2010.8

    Article  CAS  PubMed  Google Scholar 

  72. Snaar-Jagalska BE (2009) ZF-CANCER: developing high-throughput bioassays for human cancers in zebrafish. Zebrafish 6(4):441–443. doi:10.1089/zeb.2009.0614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Toshio Tanaka in Mie University Medical Zebrafish Research Center of Japan for the support of zebrafish research and R. Ikeyama and Y. Tamura for secretarial assistance.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daogang Wang.

Additional information

Beibei Zhang and Chao Xuan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Xuan, C., Ji, Y. et al. Zebrafish xenotransplantation as a tool for in vivo cancer study. Familial Cancer 14, 487–493 (2015). https://doi.org/10.1007/s10689-015-9802-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9802-3

Keywords

Navigation