Skip to main content

Advertisement

Log in

The temporal dimension of marine speciation

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Speciation is a process that occurs over time and, as such, can only be fully understood in an explicitly temporal context. Here we discuss three major consequences of speciation’s extended duration. First, the dynamism of environmental change indicates that nascent species may experience repeated changes in population size, genetic diversity, and geographic distribution during their evolution. The present characteristics of species therefore represents a static snapshot of a single time point in a species’ highly dynamic history, and impedes inferences about the strength of selection or the geography of speciation. Second, the process of speciation is open ended—ecological divergence may evolve in the space of a few generations while the fixation of genetic differences and traits that limit outcrossing may require thousands to millions of years to occur. As a result, speciation is only fully recognized long after it occurs, and short-lived species are difficult to discern. Third, the extinction of species or of clades provides a simple, under-appreciated, mechanism for the genetic, biogeographic, and behavioral ‘gaps’ between extant species. Extinction also leads to the systematic underestimation of the frequency of speciation and the overestimation of the duration of species formation. Hence, it is no surprise that a full understanding of speciation has been difficult to achieve. The modern synthesis—which united genetics, development, ecology, biogeography, and paleontology—greatly advanced the study of evolution. Here we argue that a similarly synthetic approach must be taken to further our understanding of the origin of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnihotri R, Altabet MA, Herbert TD, Tierney JE (2008) Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochem Geophys Geosyst 9:Q05013

    Article  CAS  Google Scholar 

  • Alheit J, Bakun A (2010) Population synchronies within and between ocean basins: apparent teleconnections and implications as to physical-biological linkage mechanisms. J Mar Syst 79(3–4):267–285

    Article  Google Scholar 

  • Alizon S, Kucera M, Jansen VAA (2008) Competition between cryptic species explains variations in rates of lineage evolution. Proc Natl Acad Sci USA 105(34):12382–12386

    Article  PubMed  CAS  Google Scholar 

  • Barron JA, Bukry D (2007) Development of the California current during the past 12,000 yr based on diatoms and silicoflagellates. Palaeogeogr Palaeoclimatol Palaeoecol 248(3–4):313–338

    Article  Google Scholar 

  • Barron JA, Bukry D, Dean WE, Addison JA, Finney B (2009) Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar Micropaleontol 72(3–4):176–195

    Article  Google Scholar 

  • Barron JA, Bukry D, Field D (2010) Santa Barbara Basin diatom and silicoflagellate response to global climate anomalies during the past 2,200 years. Quat Int 215(1–2):34–44

    Article  Google Scholar 

  • Battistuzzi FU, Filipski A, Hedges SB, Kumar S (2010) Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Mol Biol Evol 27(6):1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner TR, Soutar A, Ferreirabartrina V (1992) Reconstruction of the history of pacific sardine and northern anchovy populations over the past 2 millennia from sediments of the Santa-Barbara basin, California. Calif Coop Ocean Fish Investig Rep 33:24–40

    Google Scholar 

  • Benton MJ, Pearson PN (2001) Speciation in the fossil record. Trends Ecol Evol 16(7):405–411

    Article  PubMed  Google Scholar 

  • Benzie JAH (1999) Genetic structure of coral reef organisms: ghosts of dispersal past. Am Zool 39(1):131–145

    Google Scholar 

  • Benzie JAH, Williams ST (1997) Genetic structure of giant clam (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51(3):768–783

    Article  Google Scholar 

  • Bernardi G, Findley L, Rocha-Olivares A (2003) Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution 57(7):1599–1609

    PubMed  Google Scholar 

  • Boag PT, Grant PR (1981) Intense natural-selection in a population of Darwin finches (Geospizinae) in the Galapogos. Science 214(4516):82–85

    Article  PubMed  CAS  Google Scholar 

  • Brinton E (1962) The distribution of Pacific euphausiids. Bull Scripps Inst Oceanogr 8(2):51–269

    Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Brown RP, Yang ZH (2010) Bayesian dating of shallow phylogenies with a relaxed clock. Syst Biol 59(2):119–131

    Article  PubMed  CAS  Google Scholar 

  • Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc B Biol Sci 363(1506):2997–3007

    Article  Google Scholar 

  • Cannariato KG, Kennett JP, Behl RJ (1999) Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: ecological and evolutionary implications. Geology 27(1):63–66

    Article  Google Scholar 

  • Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009) Local stressors reduce coral resilience to bleaching. PLoS One 4(7):e6324

    Article  PubMed  CAS  Google Scholar 

  • Carilli JE, Norris RD, Black B, Walsh SM, McField M (2010) Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob Change Biol 16(4):1247–1257

    Article  Google Scholar 

  • Cheetham AH (1986) Tempo of evolution in a neogene bryozoan—rates of morphological change within and across species boundaries. Paleobiology 12(2):190–202

    Google Scholar 

  • Chepstow-Lusty A, Backman J, Shackleton NJ (1989) Comparison of upper Pliocene Discoaster abundance variations form North Atlantic sites 552, 607, 658, 659, and 662: further evidence for marine plankton responding to orbital forcing. Proc ODP Sci Results 108:121–141

    Google Scholar 

  • Cobb KM, Charles CD, Cheng H, Edwards RL (2008) Fossil coral constraints on tropical Pacific temperature and hydrology during the last millennium: lessons and updates. Geochim Cosmochim Acta 72(12):A169–A169

    Google Scholar 

  • Colwell RK, Rangel TF (2010) A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philos Trans R Soc B Biol Sci 365(1558):3695–3707

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254

    Article  CAS  Google Scholar 

  • Cronin TM (1985) Speciation and stasis in marine ostracoda: climatic modulation of evolution. Science 227:60–63

    Article  PubMed  CAS  Google Scholar 

  • Cronin TM, Raymo ME (1997) Orbital forcing of deep-sea benthic species diversity. Nature 385(6617):624–627

    Article  CAS  Google Scholar 

  • Crow KD, Munehara H, Bernardi G (2010) Sympatric speciation in a genus of marine reef fishes. Mol Ecol 19(10):2089–2105

    Article  PubMed  CAS  Google Scholar 

  • Cullen JL, Curry WB (1997) Variations in planktonic foraminifera faunas and carbonate preservation at Site 927: evidence for changing surface water conditions in the western tropical Atlantic Ocean during the middle Pleistocene. Proc ODP Sci Results 154:207–228

    CAS  Google Scholar 

  • Dawson MN, Hamner WM (2005) Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proc Natl Acad Sci USA 102(26):9235–9240

    Article  PubMed  CAS  Google Scholar 

  • De Bruyn M, Mather PB (2007) Molecular signatures of Pleistocene sea-level changes that affected connectivity among freshwater shrimp in Indo-Australian waters. Mol Ecol 16(20):4295–4307

    Article  PubMed  CAS  Google Scholar 

  • de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA 96(6):2864–2868

    Article  PubMed  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400(6742):354–357

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

  • Drummond AJ, Suchard MA (2010) Bayesian random local clocks, or one rate to rule them all. BMC Biol 8:114

    Article  PubMed  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97(16):9115–9120

    Article  PubMed  CAS  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, San Francisco, pp 82–115

    Google Scholar 

  • Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A (2010) Rapid sympatric ecological differentiation of Crater Lake cichlid fishes within historic times. BMC Biol 8:60

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH, Anstey RL (eds) (1995) New approaches to speciation in the fossil record. Columbia University Press, New York

    Google Scholar 

  • Emslie SD, Patterson WP (2007) Abrupt recent shift in delta C-13 and delta N-15 values in Adelie penguin eggshell in Antarctica. Proc Natl Acad Sci USA 104(28):11666–11669

    Article  PubMed  CAS  Google Scholar 

  • Emslie SD, Coats L, Licht K (2007) A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology 35(1):61–64

    Article  Google Scholar 

  • Feldheim KA, Gruber SH, Ashley MV (2001) Population genetic structure of the lemon shark (Negaprion brevirostris) in the western Atlantic: DNA microsatellite variation. Mol Ecol 10(2):295–303

    Article  PubMed  CAS  Google Scholar 

  • Field DB, Baumgartner TR, Charles CD, Ferreira-Bartrina V, Ohman MD (2006) Planktonic foraminifera of the California Current reflect 20th-century warming. Science 311(5757):63–66

    Article  PubMed  CAS  Google Scholar 

  • Finney BP, Alheit J, Emeis KC, Field DB, Gutierrez D, Struck U (2010) Paleoecological studies on variability in marine fish populations: a long-term perspective on the impacts of climatic change on marine ecosystems. J Mar Syst 79(3–4):316–326

    Article  Google Scholar 

  • Foltz DW, Nguyen AT, Kiger JR, Mah CL (2008) Pleistocene speciation of sister taxa in a North Pacific clade of brooding sea stars (Leptasterias). Mar Biol 154(3):593–602

    Article  Google Scholar 

  • Frey MA (2010) The relative importance of geography and ecology in species diversification: evidence from a tropical marine intertidal snail (Nerita). J Biogeogr 37(8):1515–1528

    Google Scholar 

  • Frey MA, Vermeij GJ (2008) Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (genus: Nerita): implications for regional diversity patterns in the marine tropics. Mol Phylogenet Evol 48(3):1067–1086

    Article  PubMed  CAS  Google Scholar 

  • Gaston KJ (1998) Species-range size distributions: products of speciation, extinction and transformation. Philos Trans R Soc Lond Ser B Biol Sci 353(1366):219–230

    Article  Google Scholar 

  • Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci USA 102(50):18040–18045

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S, Li H, Vose MD (2000) Patterns of parapatric speciation. Evolution 54(4):1126–1134

    PubMed  CAS  Google Scholar 

  • Goetze E (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc R Soc Lond Ser B Biol Sci 270(1531):2321–2331

    Article  Google Scholar 

  • Goetze E (2005) Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59(11):2378–2398

    PubMed  CAS  Google Scholar 

  • Gonzalez-Wevar CA, Nakano T, Canete JI, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56(1):115–124

    Article  PubMed  Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibrium: the tempo and mode of evolution reconsidered. Paleobiology 3:115–151

    Google Scholar 

  • Graham RW (2005) Quaternary mammal communities: relevance of the individualistic response and non-analogue faunas. Paleontol Soc Pap 11:141–158

    Google Scholar 

  • Graham MH, Dayton PK, Erlandson JM (2003) Ice ages and ecological transitions on temperate coasts. Trends Ecol Evol 18(1):33–40

    Article  Google Scholar 

  • Grant WS, Bowen BW (2006) Living in a tilted world: climate change and geography limit speciation in Old World anchovies (Engraulis; Engraulidae). Biol J Linn Soc 88(4):673–689

    Article  Google Scholar 

  • Grant BR, Grant PR (1983) Fission and fusion in a population of Darwin’s Finches: an example of the value of studying individuals in ecology. Oikos 41:530–547

    Article  Google Scholar 

  • Grant BR, Grant PR (1993) Evolution of Darwin finches caused by a rare climatic event. Proc R Soc Lond Ser B Biol Sci 251(1331):111–117

    Article  Google Scholar 

  • Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313(5784):224–226

    Article  PubMed  CAS  Google Scholar 

  • Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett 11(5):450–460

    Article  PubMed  Google Scholar 

  • Hadly EA, Spaeth PA, Li C (2009) Niche conservatism above the species level. Proc Natl Acad Sci USA 106:19707–19714

    Article  PubMed  CAS  Google Scholar 

  • Hanebuth TJJ, Stattegger K, Bojanowski A (2009) Termination of the last glacial maximum sea-level lowstand: the Sunda-Shelf data revisited. Glob Planet Change 66(1–2):76–84

    Article  Google Scholar 

  • Hare MP, Cipriano F, Palumbi SR (2002) Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution 56(4):804–816

    PubMed  Google Scholar 

  • Heist EJ, Musick JA, Graves JE (1996) Mitochondrial DNA diversity and divergence among sharpnose sharks, Rhizoprionodon terraenovae, from the Gulf of Mexico and Mid-Atlantic bight. Fish Bull 94(4):664–668

    Google Scholar 

  • Hellberg ME (1998) Sympatric sea shells along the sea’s shore: the geography of speciation in the marine gastropod Tegula. Evolution 52(5):1311–1324

    Article  Google Scholar 

  • Hendry AP (2009) Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66(8):1383–1398

    Article  Google Scholar 

  • Hendry AP, Nosil P, Rieseberg LH (2007) The speed of ecological speciation. Funct Ecol 21(3):455–464

    Article  PubMed  Google Scholar 

  • Hewitt G (2000a) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hewitt G (2000b) The genetic legacy of the Quaternary ice ages. Nature 405(6789):907–913

    Article  PubMed  CAS  Google Scholar 

  • Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55(5):729–739

    Article  PubMed  Google Scholar 

  • Hoelzel AR, Natoli A, Dahlheim ME, Olavarria C, Baird RW, Black NA (2002) Low worldwide genetic diversity in the killer whale (Orcinus orca): implications for demographic history. Proc R Soc Lond Ser B Biol Sci 269(1499):1467–1473

    Article  Google Scholar 

  • Hofreiter M, Stewart J (2009) Ecological change, range fluctuations and population dynamics during the pleistocene. Curr Biol 19(14):R584–R594

    Article  PubMed  CAS  Google Scholar 

  • Hsieh CH, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435(7040):336–340

    Article  PubMed  CAS  Google Scholar 

  • Hughen KA, Southon JR, Lehman SJ, Overpeck JT (2000) Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):1951–1954

    Article  PubMed  CAS  Google Scholar 

  • Hull PM, Norris RD (2009) Evidence for abrupt speciation in a classic case of gradual evolution. Proc Natl Acad Sci USA 106(50):21224–21229

    Article  PubMed  CAS  Google Scholar 

  • Hunt G (2010) Evolution in fossil lineages: paleontology and the origin of species. Am Nat 176:S61–S76

    Article  PubMed  Google Scholar 

  • Jablonski D (2008) Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62(4):715–739

    Article  PubMed  Google Scholar 

  • Jackson JBC, Cheetham AH (1994) Phylogeny reconstruction and the tempo of speciation in Cheilostome Bryozoa. Paleobiology 20(4):407–423

    Google Scholar 

  • Jackson JBC, Cheetham AH (1999) Tempo and mode of speciation in the sea. Trends Ecol Evol 14(2):72–77

    Article  PubMed  Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci 32:495–537

    Article  CAS  Google Scholar 

  • Jackson ST, Betancourt JL, Booth RK, Gray ST (2009) Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci USA 106:19685–19692

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DK, Haney TA, Louie KD (2004) Genes, diversity, and geologic process on the Pacific coast. Annu Rev Earth Planet Sci 32:601–652

    Article  CAS  Google Scholar 

  • Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–777

    Article  Google Scholar 

  • Johannesson K (2009) Inverting the null-hypothesis of speciation: a marine snail perspective. Evol Ecol 23(1):5–16

    Article  Google Scholar 

  • Johannesson K, Panova M, Kemppainen P, Andre C, Rolan-Alvarez E, Butlin RK (2010) Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philos Trans R Soc B Biol Sci 365(1547):1735–1747

    Article  Google Scholar 

  • Keever CC, Sunday J, Puritz JB, Addison JA, Toonen RJ, Grosberg RK et al (2009) Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution 63(12):3214–3227

    Article  PubMed  Google Scholar 

  • Kelley PH (1983) Evolutionary patterns in eight Chesapeake group molluscs: evidence for the model of punctuated equilibria. J Paleontol 57:581–598

    Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS One 5(1):e8594

    Google Scholar 

  • Kidwell SM, Flessa KW (1995) The quality of the fossil record—populations, species, and communities. Annu Rev Ecol Syst 26:269–299

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84(8):2007–2020

    Article  Google Scholar 

  • Kitamura A (2004) Effects of seasonality, forced by orbital-insolation cycles, on offshore molluscan faunal change during rapid warming in the Sea of Japan. Palaeogeogr Palaeoclimatol Palaeoecol 203(1–2):169–178

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Kuraku S, Meyer A (2008) Genomic analysis of cichlid fish ‘natural mutants’. Curr Opin Genet Dev 18(6):551–558

    Article  PubMed  CAS  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:670–686

    Article  Google Scholar 

  • Leduc RG, Robertson KM, Pitman RL (2008) Mitochondrial sequence divergence among Antarctic killer whale ecotypes is consistent with multiple species. Biol Lett 4(4):426–429

    Article  PubMed  Google Scholar 

  • Lehodey P, Alheit J, Barange M, Baumgartner T, Beaugrand G, Drinkwater K et al (2006) Climate variability, fish, and fisheries. J Clim 19(20):5009–5030

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S et al (2008) Tipping elements in the earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–1793

    Article  PubMed  CAS  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography 20(1):PA1003

    Google Scholar 

  • Lister AM, Stuart AJ (2008) The impact of climate change on large mammal distribution and extinction: evidence from the last glacial/interglacial transition. Comptes Rendus Geosci 340(9–10):615–620

    Article  Google Scholar 

  • MacCall AD (1996) Patterns of low-frequency variability in fish populations of the California current. Calif Coop Ocean Fish Investig Rep 37:100–110

    Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(11):S108–S122

    Article  PubMed  Google Scholar 

  • Malay MCD, Paulay G (2010) Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda: Diogenidae: Calcinus). Evolution 64(3):634–662

    Article  PubMed  Google Scholar 

  • Mallet J, Meyer A, Nosil P, Feder JL (2009) Space, sympatry and speciation. J Evol Biol 22(11):2332–2341

    Article  PubMed  CAS  Google Scholar 

  • Malmgren BA, Berggren WA, Lohmann GP (1983) Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9(4):377–389

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Marko PB, Moran AL (2009) Out of sight, out of mind: high cryptic diversity obscures the identities and histories of geminate species in the marine bivalve subgenus Acar. J Biogeogr 36(10):1861–1880

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1995) Species, classification, and evolution. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Toyko

    Google Scholar 

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59(1):113–125

    PubMed  Google Scholar 

  • Miller MG, Kominz MA, Browning JV, Wrigth JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Mix AC, Morey AE, Pisias NG, Hostetler SW (1999) Foraminiferal faunal estimates of paleotemperature: circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14(3):350–359

    Article  Google Scholar 

  • Monroe MJ, Bokma F (2010) Punctuated equilibrium in a neontological context. Theory Biosci 129(2–3):103–111

    Article  PubMed  Google Scholar 

  • Morard R, Quillevere F, Escarguel G, Ujiie Y, de Garidel-Thoron T, Norris RD et al (2009) Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar Micropaleontol 71(3–4):148–165

    Article  Google Scholar 

  • Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P et al (2010) Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 20(7):908–916

    Article  PubMed  CAS  Google Scholar 

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Nino/southern oscillation activity at millennial timescales during the Holocene epoch. Nature 420(6912):162–165

    Article  PubMed  CAS  Google Scholar 

  • Nee, S. 2006. Birth-death models in macroevolution. Annu Rev Ecol Evol Syst 37:1–17. doi:10.1146/annurev.ecolsys.37.091305.110035

    Google Scholar 

  • Norris RD (1999) Hydrographic and tectonic control of plankton distribution and evolution. In: Abrantes F, Mix, A (eds) Reconstructing ocean history: a window into the future. Plenum Press, London, pp 173–193

  • Norris RD (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology 26(4):236–258

    Article  Google Scholar 

  • Norris RD, Corfield RM, Cartlidge J (1996) What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology 22(3):386–405

    Google Scholar 

  • Nurhati IS, Cobb KM, Charles CD, Dunbar RB (2009) Late 20th century warming and freshening in the central tropical Pacific. Geophys Res Lett 36

  • Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Annu Rev Environ Resour 29:31–68

    Article  Google Scholar 

  • Palumbi SR, Baker CS (1994) Contrasting population-structure from nuclear intron sequences and Mtdna of Humpback Whales. Mol Biol Evol 11(3):426–435

    PubMed  CAS  Google Scholar 

  • Palumbi SR, Warner RR (2003) Why gobies are like hobbits. Science 299(5603):51–52

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific Sea urchins. Evolution 51(5):1506–1517

    Article  Google Scholar 

  • Pandolfi JM (1999) Response of Pleistocene coral reefs to environmental change over long temporal scales. Am Zool 39(1):113–130

    Google Scholar 

  • Pandolfi JM, Jackson JBC (2006) Ecological persistence interrupted in Caribbean coral reefs. Ecol Lett 9(7):818–826

    Article  PubMed  Google Scholar 

  • Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD et al (2001) Sex-biased dispersal of great white sharks—in some respects, these sharks behave more like whales and dolphins than other fish. Nature 412(6843):139–140

    Article  PubMed  CAS  Google Scholar 

  • Paulay G, Meyer C (2002) Diversification in the tropical pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integr Comp Biol 42(5):922–934

    Article  PubMed  Google Scholar 

  • Peltier WR, Fairbanks RG (2006) Global glacial ice volume and last glacial maximum duration from an extended Barbados sea level record. Quat Sci Rev 25(23–24):3322–3337

    Article  Google Scholar 

  • Purvis A (2008) Phylogenetic approaches to the study of extinction. Annu Rev Ecol Evol Syst 39:301–319

    Article  Google Scholar 

  • Quental TB, Marshall CR (2009) Extinctions during evolutionary radiations: reconciling the fossil record with molecular phylogenies. Evolution 63(12):3158–3167

    Article  PubMed  Google Scholar 

  • Quental TB, Marshall CR (2010) Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol Evol 25(8):434–441

    Article  PubMed  Google Scholar 

  • Rabosky DL (2010) Extinction rates should not be estimated form molecular phylogenies. Evolution 64(6):1816–1824

    Article  PubMed  Google Scholar 

  • Rapoport EH (1994) Remarks on marine and continental biogeography—an areographical viewpoint. Philos Trans R Soc Lond Ser B Biol Sci 343(1303):71–78

    Article  Google Scholar 

  • Raup DM (1994) The role of extinction in evolution. Proc Natl Acad Sci USA 91(15):6758–6763

    Article  PubMed  CAS  Google Scholar 

  • Rebstock GA (2001) Long-term stability of species composition in calanoid copepods off southern California. Mar Ecol Prog Ser 215:213–224

    Article  Google Scholar 

  • Reznick DN, Ricklefs RE (2009) Darwin’s bridge between microevolution and macroevolution. Nature 457(7231):837–842

    Article  PubMed  CAS  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30(8):1161–1171

    Article  Google Scholar 

  • Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72(5):1101–1121

    Article  Google Scholar 

  • Ruttenberg BI (2000) An unusual pulse in recruitment of two reef fishes in the Galapagos Islands coincident with the 1997–1998 El Nino. Bull Mar Sci 67(2):869–874

    Google Scholar 

  • Sadedin S, Hollander J, Panova M, Johannesson K, Gavrilets S (2009) Case studies and mathematical models of ecological speciation. 3: ecotype formation in a Swedish snail. Mol Ecol 18(19):4006–4023

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V et al (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59

    Article  PubMed  CAS  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, pp 296

  • Schultz JK, Feldheim KA, Gruber SH, Ashley MV, McGovern TM, Bowen BW (2008) Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol Ecol 17(24):5336–5348

    Article  PubMed  CAS  Google Scholar 

  • Shakun JD, Carlson AE (2010) A global perspective on last glacial maximum to Holocene climate change. Quat Sci Rev 29(15–16):1801–1816

    Article  Google Scholar 

  • Sheldon PR (1996) Plus ca change—a model for stasis and evolution in different environments. Palaeogeogr Palaeoclimatol Palaeoecol 127(1–4):209–227

    Article  Google Scholar 

  • Shpak M, Wakeley J, Garrigan D, Lewontin RC (2010) A structured coalescent process for seasonally fluctuating populations. Evolution 64(5):1395–1409

    PubMed  Google Scholar 

  • Siddall M, Abe-Ouchi A, Andersen M, Antonioli F, Bamber J, Bard E et al (2010) The sea-level conundrum: case studies from palaeo-archives. J Quat Sci 25(1):19–25

    Article  Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12(11):1261–1276

    Article  PubMed  Google Scholar 

  • Simpson GG (1944) Tempo and mode of speciation. Columbia University Press, New York

    Google Scholar 

  • Smedmark JEE, Eriksson T, Bremer B (2010) Divergence time uncertainty and historical biogeography reconstruction—an example from Urophylleae (Rubiaceae). J Biogeogr 37(12):2260–2274

    Article  Google Scholar 

  • Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64(2):295–315

    Article  PubMed  Google Scholar 

  • Sorhannus U (1990) Punctuated morphological change in a Neogene diatom lineage: “local” evolution or migration? Hist Biol 3:241–247

    Article  Google Scholar 

  • Stanley SM, Yang XN (1987) Approximate evolutionary stasis for bivalve morphology over millions of years—a multivariate, multilineage study. Paleobiology 13(2):113–139

    Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16(7):381–390

    Article  PubMed  Google Scholar 

  • Waelbroeck C, Paul A, Kucera M, Rosell-Melee A, Weinelt M, Schneider R et al (2009) Constraints on the magnitude and patterns of ocean cooling at the last glacial maximum. Nat Geosci 2(2):127–132

    Article  CAS  Google Scholar 

  • Wei K-Y, Kennett JP (1988) Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345–363

    Google Scholar 

  • Weiss AM (2011) The evolution of evolution: reconciling the problem of stability. Evol Biol 38(1):42–51

    Article  Google Scholar 

  • Williams ST, Reid DG (2004) Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58(10):2227–2251

    PubMed  CAS  Google Scholar 

  • Wilson NG, Schrodl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18(5):965–984

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Pandolfi and Nancy Budd for the invitation to contribute to this volume and the thoughtful comments of two anonymous reviewers. PMH would like to thank Clary Bryan for her significant contribution to digitizing the discoaster dataset, and Jeremy Jackson for the introduction to the Modern Synthesis and the possibilities of the fossil record. RDN thanks Jeremy Jackson for his enthusiasm for science and teaching and inspiring this re-evaluation of marine speciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, R.D., Hull, P.M. The temporal dimension of marine speciation. Evol Ecol 26, 393–415 (2012). https://doi.org/10.1007/s10682-011-9488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9488-4

Keywords

Navigation