Skip to main content
Log in

The Evolution of Evolution: Reconciling the Problem of Stability

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Evolutionary Science has, at least since the publication of Origin, been less concerned with the continuation of species in stable forms, than with the reconfiguration of forms into a host of varieties. So influential has this emphasis been that, over the years, “variation” has become a cardinal desideratum, even taking precedence over the macroevolutionary landscape. This orientation has made it much more difficult to objectively assess the meaning of non-change patterns such as periods of stasis, which appear to be widespread in most species. Yet, if stasis is an expectable outcome of evolutionary activity, this raises the possibility that there may be mechanisms and processes at many causal levels, acting on its behalf, without reference to the impetus toward persistent variation. Researchers have been reluctant to attribute stasis to a macroevolutionary tendency toward ‘stability’ despite the commonality of stasis in many species, and notwithstanding the many biological/behavioral processes that seem inclined to produce and maintain conformance, regulation and consistency. Speciation, paradoxically, is the best evidence for an overriding influence toward stability in that stability would seem to be a necessary condition prior to the development of isolating mechanisms. An alternative macroevolutionary model of biological activity is offered consisting of two tendencies, “variety” counterpoised with “stability” both acting in the service of the persistence of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, P. S., Boron, W. F., & Boulpaep, E. L. (2003). Physiology of membranes. In W. F. Boron & E. Boulpaep (Eds.), Medical physiology (pp. 50–86). Philadelphia, PA: Saunders.

    Google Scholar 

  • Barton, N. H., & Partridge, L. (2000). Limits to natural selection. Bioessays, 22(12), 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  • Belichon, S., Clobert, J., & Masson, M. (1996). Are there differences in fitness components between philopatric and dispersing individuals? Acta Ecologica, 17(6), 503–517.

    Google Scholar 

  • Benkman, C. (2003). Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine. American Naturalist, 162(2), 182–194.

    Article  PubMed  Google Scholar 

  • Blows, M. W., & Hoffmann, A. A. (2005). A reassessment of genetic limits to evolutionary change. Ecology, 86(6), 1371–1384.

    Article  Google Scholar 

  • Boron, W. F., & De Weer, P. (1976). Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. Journal of General Physiology, 67(1), 91–112.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, R., Hunt, J., Blows, M. W., Smith, M. J., Bussie, L. F., & Jennions, M. D. (2005). Experimental evidence for multivariate stabilizing sexual selection. Evolution, 59(4), 871–880.

    PubMed  Google Scholar 

  • Brown, J. L. (1974). Alternate routes to sociality in jays—With a theory for the evolution of altruism and communal breeding. American Zoologist, 14(1), 63–80.

    Google Scholar 

  • Charlesworth, B., Lande, R., & Slatkin, M. (1982). A neo-Darwinian commentary on macroevolution. Evolution, 36(3), 474–498.

    Article  Google Scholar 

  • Clutton-Brock, T., et al. (1998). Infanticide and expulsion of females in a cooperative mammal. Processes of Biological Science, 265(1412), 2291–2295.

    Article  CAS  Google Scholar 

  • Cooper, V. S., & Lenski, R. (2000). The population genetics of ecological specialization in evolving E. coli populations. Nature, 407(6805), 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Dalen, L., et al. (2007). Ancient DNA reveals lack of postglacial habitat tracking in the Arctic Fox. PNAS, 104(16), 6726–6729.

    Article  PubMed  CAS  Google Scholar 

  • Day, R., Laland, K., & Odling-Smee, J. (2003). Rethinking adaptation: The Niche construction perspective. Perspectives in Biology and Medicine, 46(1), 80–95.

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibrium: An alternative to phyletic gradualism. In T. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper.

    Google Scholar 

  • Eldredge, N., et al. (2005). The dynamics of evolutionary stasis. Paleobiology, 31(2), 133–145.

    Article  Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. The American Naturalist, 169(2), 227–244.

    Article  PubMed  Google Scholar 

  • Falconer, D. S., & Mackay, T. (1996). Introduction to quantitative genetics. London: Longman.

    Google Scholar 

  • Free, A., & Barton, N. (2007). Do evolution and ecology need the Gaia hypothesis? Trends in Ecology & Evolution, 22(11), 611–619.

    Article  Google Scholar 

  • Futuyma, D. (2010). Evolutionary constraints and ecological consequences. Evolution, 64(7), 1865–1884.

    Article  PubMed  Google Scholar 

  • Gingerich, P. D. (2001). Rates of evolution on the time scale of the evolutionary process. In A. P. Hendry & M. T. Kinnison (Eds.), Contemporary microevolution: Rate, pattern, and process (pp. 127–144). Dordrecht: Kluwer Academic Publishers.

  • Goldman, D. (1995). Taxonomy, evolution, and biostratigraphy of the Orthograptus quadrimucronatus species group (Ordovician, Graptolithina). Journal of Paleontology, 69(3), 516–540.

    Google Scholar 

  • Goossens, B. (2006). Philopatry and reproductive success in Bornean orang-utans (Pongo pygmaeus). Molecular Ecology, 15(9), 2577–2588.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J. (1982). The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. In R. Milkman (Ed.), Perspectives on evolution (pp. 83–104). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Gould, S. J. (1995). Tempo and mode in the macroevolutionary reconstruction of darwinism. In W. M. Fitch & F. J. Ayala (Eds.), Tempo and mode in evolution: Genetics and paleontology 50 years after Simpson (pp. 25–144). Washington, D.C.: National Academy Press.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society, 205(1161), 581–598.

    Article  CAS  Google Scholar 

  • Grantham, T. (1995). Hierarchical approaches to macroevolution—Recent work on species selection and the effect hypothesis. Annual Review of Ecology and Systematics, 26, 301–321.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 130–150). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Harrison, G. W. (1979). Global stability of predator-prey interactions. Journal of Mathematical Biology, 8(2), 159–171.

    Article  Google Scholar 

  • Hass, C. C., & Jenni, D. A. (1991). Structure and ontogeny of dominance relationships among bighorn rams. Canadian Journal of Zoology, 69(2), 471–476.

    Article  Google Scholar 

  • Heistermann, M., & Schulke, O. (2008). Dominance, aggression and physiological stress in wild male Assamese macaques (Macaca assamensis). Hormones and Behavior, 54(5), 613–619.

    Article  PubMed  Google Scholar 

  • Hendry, A. P., Carroll, S. P., & Reznick, D. N. (2007). Evolution on ecological time scales. Functional Ecology, 21, 377–387.

    Article  Google Scholar 

  • Hoffman, A. (1989). Arguments on evolution. New York: Oxford University Press.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (2009). The superorganism: The beauty, elegance, and strangeness of insect societies. New York: W.W. Norton.

    Google Scholar 

  • Holling, C. S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada, 45, 1–60.

    Google Scholar 

  • Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. PNAS, 104(47), 18404–18408.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, D. (2000). Micro- and macroevolution: Scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 26(4), 15–52.

    Article  Google Scholar 

  • Jablonski, D. (2007). Scale and hierarchy in macroevolution. Paleontology, 50(1), 87–109.

    Article  Google Scholar 

  • Jackson, J. B., & Cheetham, A. H. (1999). Tempo and mode of speciation in the sea. Trends in Ecology & Evolution, 14(2), 72–77.

    Article  Google Scholar 

  • Johnson, M., & Gaines, M. (1990). Evolution of dispersal: Theoretical models and empirical tests using birds and mammals. Annual Review of Ecology and Systematics, 21, 449–480.

    Article  Google Scholar 

  • Kaplan, M. J. (2009). The paradox of stasis and the nature of explanations in evolutionary biology. Philsosophy of Science, 76, 797–808.

    Google Scholar 

  • Lenton, T. M. (1998). Gaia and natural selection. Nature, 394, 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Levinton, J. S. (2001). Genetics, paleontology, and macroevolution. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lieberman, B., Brett, C., & Edlredge, N. (1994). Patterns and processes of stasis in two species lineages of brachiopods from the Middle Devonian of New York State. American Museum of Natural History Novitates, 3114, 1–23.

    Google Scholar 

  • Lieberman, B., & Dudgeon, S. (1996). An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeography, Palaeoclimatology, Palaeoecology, 127(1–4), 229–238.

    Article  Google Scholar 

  • Lieberman, B., Miller, S., & Eldredge, N. (2007). Paleontological patterns, macroecological dynamics and the evolutionary process. Evolutionary Biology, 34(1–2), 28–48.

    Article  Google Scholar 

  • Lovelock, J. (1995). The ages of Gaia. New York: Oxford University Press.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Mayr, E. (1992). Speciational evolution or punctuated equilibria. In A. Somit & S. Peterson (Eds.), The dynamics of evolution (pp. 21–48). New York: Cornell University Press.

    Google Scholar 

  • Mayr, E. (1996). What is a species, and what is not? Phlosophy of Science, 63(2), 262–277.

    Article  Google Scholar 

  • Mead, L., & Arnold, S. (2004). Quantitative genetic models of sexual selection. Trends in Ecological Evolution, 19(5), 264–271.

    Article  Google Scholar 

  • Miller, J. G. (1978). Living systems. New York: McGraw Hill.

    Google Scholar 

  • Mosser, A., & Packer, C. (2009). Group territoriality and the benefits of sociality in the African lion, Panthera leo. Animal Behaviour, 78, 359–370.

    Article  Google Scholar 

  • Norris, D., & Marra, P. (2007). Seasonal interactions, habitat quality, and population dynamics in migratory birds. The Condor, 109, 535–547.

    Article  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2007). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Rensch, B. (1959). Trends towards progress of brains and sense organs. Cold Spring Harbor Symposia on Quantitative Biology, 24, 291–303.

    PubMed  CAS  Google Scholar 

  • Sachs, J., Mueller, U., Wilcox, T., & Bull, J. (2004). The evolution of cooperation. The Quarterly Review of Biology, 79(2), 135–160.

    Article  PubMed  Google Scholar 

  • Semenza, G. (2007). Life with oxygen. Science, 318(5847), 622–664.

    Article  Google Scholar 

  • Simpson, G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Sinervo, B., & Licht, P. (1991). Hormonal and physiological control of clutch size, egg size, and egg shape in sideblotched lizards (Uta stansburiana). Journal of Experimental Zoology, 257(2), 252–264.

    Article  CAS  Google Scholar 

  • Stacey, P. B., & Ligon, J. D. (1987). Territory quality and dispersal option in the acorn woodpecker, and a challenge to the habitat-saturation model of cooperative breeding. American Naturalist, 130(5), 654–676.

    Article  Google Scholar 

  • Stanley, S. M. (1979). Macroevolution. San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Strange, K. (2003). From genes to integrative physiology: Ion channel and transporter biology in Caenorhabditis elegans. Physiology Review, 83, 377–415.

    CAS  Google Scholar 

  • Turner, J. (1994). Ventilation and thermal constancy of a colony of a Southern African termite (Odontotermes-Transvaalensis, Macrotermitinae). Journal of Arid Environments, 28(3), 231–248.

    Article  Google Scholar 

  • Vrba, E. S. (1983). Macroevolutionary trends: New perspectives on the roles of adaptation and incidental effect. Science, 221(4608), 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary synthesis. South African Journal of Science, 81, 229–236.

    Google Scholar 

  • Walsh, B., & Blows, M. W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: A geometric view of adaptation. Annual Review of Ecology, Evolution, and Systems, 40, 41–59.

    Article  Google Scholar 

  • Wilson, R. A., Barker, M. J., & Brigandt, I. (2009). When traditional essentialism Fails: Biological natural kinds. ualberta.academia.edu. 2009. http://ualberta.academia.edu/documents/0008/6138/Essentialism.pdf (accessed March 4, 2010).

  • Wright, E. A. (1968). Dysmorphogenesis: Parental behaviour and survival of normal and deformed offspring. Proceedings of the Royal Society of Medicine, 61(12), 1283–1285.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S. H. (2004). Generation of resting membrane potential. Advances in Physiology Education, 28, 139–142.

    Article  PubMed  Google Scholar 

  • Zeh, D., Zeh, J., & Ishida, Y. (2009). Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays, 7, 715–726.

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank three anonymous reviewers and Benedikt Hallgrimsson for comments on an earlier version of this paper. I am very grateful to Bruce S. Lieberman for his patience, kindness and very useful conversations and comments on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, A.M. The Evolution of Evolution: Reconciling the Problem of Stability. Evol Biol 38, 42–51 (2011). https://doi.org/10.1007/s11692-010-9099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9099-y

Keywords

Navigation