Skip to main content
Log in

The potential of a population genomics approach to analyse geographic mosaics of plant--insect coevolution

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

A central issue in the evolutionary ecology of species interactions is coevolution, which involves the reciprocal selection between individuals of interacting species. Understanding the importance of coevolution in shaping species interactions requires the consideration of spatial variation in their strength. This is exactly what the, recently developed, geographic mosaic theory of coevolution addresses. Another major development in the study of population ecology is the introduction of the population genomics approach in this field of research. This approach addresses spatial processes through molecular methods. It is of particular interest that population genomics is especially applicable to natural populations of non-model species. We describe how population genomics can be used in the context of the geographic mosaic of coevolution, specifically to identify coevolutionary hot-spots, and to attribute genetic variation found at specific loci to processes of selection versus trait remixing. The proposed integration of the population genomics approach with the conceptual framework of the geographic mosaic of coevolution is illustrated with a few selected, particularly demonstrative, examples from the realm of insect--plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal AF, Brodie ED, Wade MJ (2001) On indirect genetic effects in structured populations. Am Nat 158:308–323

    Article  PubMed  CAS  Google Scholar 

  • Althoff DM, Thompson JN (1999) Comparative geographic structures of two parasitoid-host interactions. Evolution 53:818–825

    Article  Google Scholar 

  • Avise JC (2000) Stability, equilibrium and molecular aspects of conservation in marine species. Hydrobiologia 420:Xi–Xii

    Google Scholar 

  • Benkman CW (1999) The selection mosaic and diversifying coevolution between crossbills and lodgepole pine. Am Nat 153:S75–S91

    Article  Google Scholar 

  • Benkman CW, Holimon WC, Smith JW (2001) The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pine. Evolution 55:282–294

    PubMed  CAS  Google Scholar 

  • Benkman CW, Parchman TL, Favis A et al (2003) Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine. Am Nat 162:182–194

    Article  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (1992) Genetics of physiological and behavioral resistance to host furanocoumarins in the parsnip webworm. Evolution 46:1373–1384

    Article  Google Scholar 

  • Bermingham E, Avise JC (1986) Molecular zoogeography of fresh-water fishes in the southeastern United-States. Genetics 113:939–965

    PubMed  CAS  Google Scholar 

  • Black WC IV, Baer CF, Antolin MF et al (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ (1998) Genetic population structure of the fairy shrimp Branchinecta coloradensis (Anostraca) in the Rocky Mountains of Colorado. Can J Zool 76:2049–2057

    Google Scholar 

  • Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455

    Article  PubMed  Google Scholar 

  • Brodie ED Jr, Ridenhour BJ, Brodie ED III (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56:2067–2082

    PubMed  Google Scholar 

  • Burdon JJ, Thrall PH (1999) Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153:S15–S33

    Article  Google Scholar 

  • Butlin RK (2010) Population genomics and speciation. Genetica 138:409–418

    Article  PubMed  Google Scholar 

  • Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am Nat 161:507–522

    Article  PubMed  Google Scholar 

  • Courtney S (1988) If it’s not coevolution, it must be predation. Ecology 69:910–911

    Article  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, London

    Google Scholar 

  • de Jong PW, Nielsen JK (1999) Polymorphism in a flea beetle for the ability to use an atypical host plant. Proc R Soc Lond B 266:103–111

    Article  Google Scholar 

  • de Jong PW, Nielsen JK (2002) Host plant use of Phyllotreta nemorum: do coadapted gene complexes play a role? Ent Exp Appl 104:207–215

    Article  Google Scholar 

  • de Jong PW, de Vos H, Nielsen JK (2001) Demic structure and its relation with the distribution of an adaptive trait in danish flea beetles. Mol Ecol 10:1323–1332

    Article  PubMed  Google Scholar 

  • de Jong PW, Breuker CJ, de Vos H et al (2009) Genetic differentiation between resistance phenotypes in the phytophagous flea beetle, Phyllotreta nemorum. J Ins Sci 9:69

    Google Scholar 

  • Dicke M, van Loon JJA, de Jong PW (2004) Ecogenomics benefits community ecology. Science 305:618–619

    Article  PubMed  CAS  Google Scholar 

  • Egan SP, Funk DJ (2006) Individual advantages to ecological specialization: insights on cognitive constraints from three conspecific taxa. Proc R Soc Lond B 273:843–848

    Article  Google Scholar 

  • Egan SP, Nosil P, Funk DJ (2008) Selection and genomic differentiation during ecological speciation: isolating the contributions of host association via a comparative genome scan of Neochlamisus bebbianae leaf beetles. Evolution 62:1162–1181

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants—a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to the human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fox LR (1981) Defense and dynamics in plant-herbivore systems. Am Zool 21:853–864

    Google Scholar 

  • Fox LR (1988) Diffuse coevolution within complex communities. Ecology 69:906–907

    Article  Google Scholar 

  • Funk DJ (1998) Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–1759

    Article  Google Scholar 

  • Funk DJ, Nosil P (2008) Comparative analyses and ecological speciation in herbivorous insects. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 117–135

    Google Scholar 

  • Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the comparative study of speciation ecology. Genetica 116:251–267

    Article  PubMed  Google Scholar 

  • Futuyma DJ (2009) Evolution. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Futuyma DJ, Slatkin M (1983) Coevolution. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Gillet EM, Gregorius H-R (2008) Measuring differentiation among populations at different levels of genetic integration. BMC Genet 9:60

    Article  PubMed  Google Scholar 

  • Gomez JM, Abdelaziz M, Camacho JPM et al (2009a) Local adaptation and maladaptation to pollinators in a generalist geographic mosaic. Ecol Lett 12:672–682

    Article  PubMed  Google Scholar 

  • Gomez JM, Perfectti F, Bosch J et al (2009b) A geographic selection mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263

    Article  Google Scholar 

  • Gomulkiewicz R, Drown DM, Dybdahl MF et al (2007) Dos and don’ts of testing the geographic mosaic theory of coevolution. Heredity 98:249–258

    Article  PubMed  CAS  Google Scholar 

  • Gregorius H-R, Degen B, König A (2007) Problems in the analysis of genetic differentiation among populations—a case study in quercus robur. Silvae Genet 56:190–199

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    PubMed  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Mol Ecol 17:5378–5390

    Article  PubMed  CAS  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J et al (2010) Phylogeography’s past, present and future: 10 years after Avise, 2000. Mol Phylogen Evol 54:291–301

    Article  CAS  Google Scholar 

  • Ikeda H, Setoguchi H (2010) Natural selection on PHYE by latitude in the Japanese archipelago: insight from locus specific phylogeographic structure in Arcteria nana (Ericaceae). Mol Ecol 19:2779–2791

    Article  PubMed  CAS  Google Scholar 

  • Iwao K, Rausher MD (1997) Evolution of plant resistance to multiple herbivores: quantifying diffuse coevolution. Am Nat 149:316–335

    Article  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Jermy T (1984) Evolution of insect host plant relationships. Am Nat 124:609–630

    Article  Google Scholar 

  • Jost L (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kuzina V, Ekstrøm LT, Andersen SB et al (2009) Identification of defence compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an eco-metabolomic approach. Plant Physiol 151:1977–1990

    Article  PubMed  CAS  Google Scholar 

  • Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB (2011) Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry (in press)

  • Laine AL (2009) Role of coevolution in generating biological diversity: spatially divergent selection trajectories. J Exp Bot 60:2957–2970

    Article  PubMed  CAS  Google Scholar 

  • Lively CM (1999) Migration, virulence, and the geographic mosaic of adaptation by parasites. Am Nat 153:S34–S47

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Conord C, Després L (2009) Genome-scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol Biol 9:288

    Article  PubMed  Google Scholar 

  • Medrano M, Herrera CM (2008) Geographical structuring of genetic diversity across the whole distribution range of Narcissus longispathus, a habitat-specialist, Mediterranean narrow endemic. Ann Bot 102:183–194

    Article  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2010) Assessing population structure: Fst and related measures. Mol Ecol Res (early view)

  • Minder AM, Widmer A (2008) A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 17:1552–1563

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, Columbia

    Google Scholar 

  • Neuhauser C, Andow DA, Heimpel GE et al (2003) Community genetics: expanding the synthesis of ecology and genetics. Ecology 84:545–558

    Article  Google Scholar 

  • Nielsen JK (1997) Variation in defences of the plant Barbarea vulgaris and in counteradaptations by the flea beetle Phyllotreta nemorum. Entomol Exp Appl 82:25–35

    Article  Google Scholar 

  • Nielsen JK, de Jong PW (2005) Temporal and host-related variation in frequencies of genes that enable Phyllotreta nemorum to utilize a novel host plant, Barbarea vulgaris. Entomol Exp Appl 115:265–270

    Article  Google Scholar 

  • Nielsen JK, Nagao T, Okabe H et al (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285

    Article  PubMed  CAS  Google Scholar 

  • Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection. Evolution 62:316–336

    Article  PubMed  Google Scholar 

  • Nuismer SL, Thompson JN (2006) Coevolutionary alternation in antagonistic interactions. Evolution 60:2207–2217

    PubMed  Google Scholar 

  • Nuismer SL, Gomulkiewicz R, Morgan MT (2003) Coevolution in temporally variable environments. Am Nat 162:195–204

    Article  PubMed  Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119–127

    Article  PubMed  CAS  Google Scholar 

  • Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Missi Botl Gard 90:35–55

    Article  Google Scholar 

  • Rausher MD (1988) Is coevolution dead? Ecology 69:898–901

    Article  Google Scholar 

  • Rausher MD (1996) Genetic analysis of coevolution between plants and their natural enemies. Tr Genet 12:212–217

    Article  CAS  Google Scholar 

  • Rogers SM, Bernatchez L (2005) Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol Ecol 14:351–361

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer C (2002) Towards a molecular characterization of adaptation in local populations. Curr Op Genet Dev 12:683–687

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution—multiple functions for seaweed secondary metabolites. Ecology 76:107–123

    Article  Google Scholar 

  • Schneider CJ (2008) Exploiting genomic resources in studies of speciation and adaptive radiation of lizards in the genus Anolis. Integr Comp Biol 48:520–526

    Article  PubMed  Google Scholar 

  • Schoonhoven LM (2005) Insect--plant relationships: the whole is more than the sum of its parts. Entomol Exp Appl 115:5–6

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke ME (2005) Insect--plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Sefc KM, Payne RB, Sorensen MD (2007) Genetic differentiation after founder events: an evaluation of Fst estimators with empirical and simulated data. Evol Ecol Res 9:21–39

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  PubMed  CAS  Google Scholar 

  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688

    Article  PubMed  CAS  Google Scholar 

  • Strong DR, Lawton JH, Southwood R (1984) Insects on plants: community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Thompson JN (1988) Coevolution and alternative hypotheses on insect plant interactions. Ecology 69:893–895

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. Univ of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (1999a) The evolution of species interactions. Science 284:2116–2118

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (1999b) Specific hypotheses on the geographic mosaic of coevolution. Am Nat 153:S1–S14

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2009a) The coevolving web of life. Am Nat 173:125–140

    Article  PubMed  Google Scholar 

  • Thompson JN (2009b) Which ecologically important traits are most likely to evolve rapidly? Oikos 118:1281–1283

    Article  Google Scholar 

  • Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators—constraints on specialization. Ecology 73:1780–1791

    Article  Google Scholar 

  • Thompson JN, Cunningham BM, Seagraves KA et al (1997) Plant polyploidy and insect/plant interactions. Am Nat 150:730–743

    Article  PubMed  CAS  Google Scholar 

  • Toju H, Sota T (2006) Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. Am Nat 167:105–117

    Article  PubMed  Google Scholar 

  • Toneatto F, Nielsen JK, Ørgaard M et al (2010) Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark. Mol Ecol 19:3456–3465

    Article  PubMed  CAS  Google Scholar 

  • Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642

    Article  PubMed  CAS  Google Scholar 

  • Verbaarschot P, Calvo D, Esselink GD et al (2007) Isolation of polymorphic microsatellite loci from the flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae). Mol Ecol Notes 7:60–62

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population substructure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Wright S (1968) Evolution and the genetics of populations: a treatise in four volumes. University of Chicago Press, Chicago

    Google Scholar 

  • Xu H, Sarkar B, George V (2009) A new measure of population structure using multiple single nucleotide polymorphisms and its relationship with Fst. BMC Res Notes 2:21

    Article  PubMed  Google Scholar 

  • Zangerl AR, Berenbaum MR (2003) Phenotype matching in wild parsnip and parsnip webworms: causes and consequences. Evolution 57:806–815

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to John Thompson for constructive comments on a preliminary draft of this paper, and sharing his thoughts about its topic with us. We also thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim M. C. A. Vermeer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeer, K.M.C.A., Dicke, M. & de Jong, P.W. The potential of a population genomics approach to analyse geographic mosaics of plant--insect coevolution. Evol Ecol 25, 977–992 (2011). https://doi.org/10.1007/s10682-010-9452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-010-9452-8

Keywords

Navigation