Skip to main content
Log in

Resistance in the Plant, Barbarea vulgaris, and Counter-Adaptations in Flea Beetles Mediated by Saponins

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Three saponins and two sapogenins had differential effects on food consumption in five near-isogenic flea beetle lines, which differ in their ability to utilize a novel host plant, Barbarea vulgaris (Brassicaceae). The ability to live on this plant is controlled by major, dominant R-genes in the flea beetle, Phyllotreta nemorum (Coleoptera: Chrysomelidae: Alticinae). A susceptible genotype (rr) is unable to live on the plant, whereas resistant genotypes (RR and Rr) can utilize the novel host plant. Among compounds isolated from B. vulgaris, hederagenin cellobioside (hederagenin-3-O-(4-O-β-D-glucopyranosyl)-β-D-glucopyranoside) inhibited feeding, whereas the effect of oleanolic acid cellobioside was much weaker. The aglycones (sapogenins) were inactive. Although hederagenin cellobioside was active against all flea beetle lines, its effect on food consumption was much stronger on the susceptible genotype (rr) compared to the resistant genotype (Rr). Susceptible and resistant flea beetle genotypes were equally sensitive to a non-host saponin, α-hederin (hederagenin-3-O-(2-O-α-L-rhamnopyranosyl)-α-L-arabinopyranoside). These results suggest that R-alleles in flea beetles might be specific adaptations to defensive saponins in B. vulgaris. A possible mechanism of action of the R-alleles might be to encode for an enzyme (e.g. a glucosidase), which is able to cleave glycosidic bonds in hederagenin cellobioside, but not in α-hederin. The potential role of saponins as defensive compounds in B. vulgaris and as targets for counter-adaptations in flea beetles and other insects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adel, M. M., Sehnal, F., and Jurzysta, M. 2000. Effect of alfalfa saponins on the moth Spodoptera littoralis. J. Chem. Ecol. 26: 1065–1078.

    Article  CAS  Google Scholar 

  • Agerbirk, N., Olsen, C. E., and Nielsen, J. K. 2001. Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58: 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Agerbirk, N., Olsen, C. E., Bibby, B. M., Frandsen, H. O., Brown, L. D., Nielsen, J. K., and Renwick, J. A. A. 2003a. A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J. Chem. Ecol. 29: 1417–1433.

    Article  PubMed  CAS  Google Scholar 

  • Agerbirk, N., Ørgaard, M., and Nielsen, J. K. 2003b. Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Argentieri, M. P., D’Addabbo, T., Tava, A., Agostinelli, A., Jurzysta, M., and Avato, P. 2008. Evaluation of nematicidal properties of saponins from Medicago spp. Eur. J. Plant Pathol. 120: 189–197.

    Article  CAS  Google Scholar 

  • Badenes-Perez, F. R., Nault, B. A., and Shelton, A. M. 2006. Dynamics of diamondback moth oviposition in the presence of a highly preferred non-suitable host. Entomol. Exp. Appl. 120: 23–31.

    Article  Google Scholar 

  • Börjesdotter, D. 2000. Barbarea verna and Barbarea vulgaris as host plants for the pollen beetle (Meligethes aeneus). J. Agr. Sci. 134: 213–220.

    Article  Google Scholar 

  • Bowyer, P., Clarke, B. R., Lunness P., Daniels, M. J., and Osbourn, A. E. 1995. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P. R. and Raven, P. H. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Feeny, P. 1977. Defensive ecology of the Cruciferae. Ann. Mo. Bot. Gard. 64: 221–234.

    Article  Google Scholar 

  • Futuyma, D. J. and Keese, M. C. 1992. Evolution and coevolution of plants and phytophagous arthropods, pp. 439–475 in G. A. Rosenthal and M. R. BERENBAUM (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, 2nd Edition, Vol. II: Ecological and Evolutionary Processes. Academic Press, San Diego.

  • Glendinning, J. I. 2002. How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol. Exp. Appl. 104: 15–25.

    Article  CAS  Google Scholar 

  • Golawska, S. 2007. Deterrence and toxicity of plant saponins for the pea aphid, Acyrthosiphon pisum Harris. J. Chem. Ecol. 33: 1598–1606.

    Article  PubMed  CAS  Google Scholar 

  • Gomulkiewicz, R., Drown, D. M., Dybdahl, M. F., Godsoe, W., Nuismer, S. L., Pepin, K. M., Ridenhour, B. J., Smith, C. I., and Yoder, J. B. 2007. Dos and don’ts of testing the geographic mosaic theory of coevolution. Heredity 98: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T. 1996. Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol. Exp. Appl. 80: 177–188.

    Article  CAS  Google Scholar 

  • Huang, X. and Renwick, J. A. A. 1994. Cardenolides as oviposition deterrents to two Pieris species: Structure-activity relationships. J. Chem. Ecol. 20: 1039–1051.

    Article  CAS  Google Scholar 

  • Huang, X., Renwick, J. A. A., and Sachdev-Gupta, K. 1993. Oviposition stimulants and deterrents regulating differential acceptance of Iberis amara by Pieris rapae and P. napi oleracea. J. Chem. Ecol. 19: 1645–1663.

    Article  CAS  Google Scholar 

  • Huang, H. -C., Liao, S. -C., Chang, F. -R., Kuo, Y. -H., and Wu, Y. -C. 2003. Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of the golden apple snails, Pomacea canaliculata. J. Agric. Food Chem. 51: 4916–4919.

    Article  PubMed  CAS  Google Scholar 

  • De Jong, P. W., Frandsen, H. O., Rasmussen, L., and Nielsen, J. K. 2000. Genetics of resistance against defenses of the host plant Barbarea vulgaris in a Danish flea beetle population. Proc. R. Soc. Lond. B Biol. Sci. 267: 1663–1670.

    Article  CAS  Google Scholar 

  • De Jong, P. W., Breuker, C. J., De Vos, H., Vermeer, K. M. C. A., Oku, K.,Verbaarschot, P., Nielsen, J. K., and Brakefield, P. M. 2009. Genetic differentiation between resistance phenotypes in the phytophagous flea beetle, Phyllotreta nemorum. J. Insect Science 9: 75.

    Google Scholar 

  • Kuzina, V., Ekstrøm, C. T., Andersen, S. B., Nielsen, J. K., Olsen, C. E., and Bak, S. 2009. Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol. (in press).

  • Morant, A. V., Jørgensen, K., Jørgensen, C., Paquette S. M., Sanchez-Perez, R., Møller, B. L., and Bak, S. 2008. β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795–1813.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey, J. P., Wubben, J. P., and Osbourn, A. E. 2000. Stagonospora avenae secretes multiple enzymes that hydrolyze oat leaf saponins. Mol. Plant-Microbe Interact. 13: 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • Nagao, T., Tanaka, R., and Okabe, H. 1991. Studies on the constituents of Aster scaber Thunb. I. Structures of scaberosides, oleanolic acid glycosides isolated from the root. Chem. Pharm. Bull. 39: 1699–1703.

    CAS  Google Scholar 

  • Nielsen, J. K. 1978. Host plant discrimination within Cruciferae: Feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24: 41–54.

    Article  CAS  Google Scholar 

  • Nielsen, J. K. 1997a. Variation in defenses of the plant Barbarea vulgaris and in counter-adaptations by the flea beetle Phyllotreta nemorum. Entomol. Exp. Appl. 82: 25–35.

    Article  Google Scholar 

  • Nielsen, J. K. 1997b. Genetics of the ability of Phyllotreta nemorum larvae to survive in an atypical host plant Barbarea vulgaris ssp. arcuata. Entomol. Exp. Appl. 82: 37–44.

    Article  Google Scholar 

  • Nielsen, J. K. 1999. Specificity of a Y-linked gene in the flea beetle Phyllotreta nemorum for defenses in Barbarea vulgaris. Entomol. Exp. Appl. 91: 359–368.

    Article  Google Scholar 

  • Nielsen, J. K and De Jong, P. W. 2005. Temporal and host-related variation in frequencies of genes which enable Phyllotreta nemorum to utilize a novel host plant, Barbarea vulgaris. Entomol. Exp. Appl. 115: 265–270.

    Article  Google Scholar 

  • Nielsen, J. K., Larsen, L. M., and Sørensen, H. 1977. Cucurbitacin E and I in Iberis amara: Feeding inhibitors for Phyllotreta nemorum. Phytochemistry 16: 1519–1522.

    Article  CAS  Google Scholar 

  • Osbourn, A. E. 1996. Saponins and plant defense—a soap story. Trends Plant Sci. 1: 4–9.

    Article  Google Scholar 

  • Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99: 11223–11228.

    Article  PubMed  CAS  Google Scholar 

  • Renwick, J. A. A. 2002. The chemical world of crucivores: lures, treats and traps. Entomol. Exp. Appl. 104: 35–42.

    Article  CAS  Google Scholar 

  • Sachdev-Gupta, K., Radke, C. D., and Renwick, J. A. A. 1993a. Antifeedant activity of cucurbitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry 33: 1385–1388.

    Article  CAS  Google Scholar 

  • Sachdev-Gupta, K., Radke, C. D., Renwick, J. A., and Dimock, M. B. 1993b. Cardenolides from Erysimum cheiranthoides: Feeding deterrents to Pieris rapae larvae. J. Chem. Ecol. 19: 1355–1369.

    Article  CAS  Google Scholar 

  • Schoonhoven, L. M., Van Loon, J. J. A., and Dicke, M. 2005. Insect-Plant Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Shinoda, T., Nagao, T., Nakayama, M., Serizawa, H., Koshioka, M., Okabe, H., and Kawai, A. 2002. Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamond back moth, Plutella xylostella. J. Chem. Ecol. 28: 587–599.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. N. 1994. The Coevolutionary Process. The University of Chicago Press, Chicago.

    Google Scholar 

  • Thompson, J. N. 2005. The Geographic Mosaic of Coevolution. The University of Chicago Press. Chicago and London.

    Google Scholar 

  • Van Leur, H., Vet, L. E. M., Van Der Putten, W. H., and Van Dam, N. M. 2008. Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J. Chem. Ecol. 34: 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Wittstock, U., Agerbirk, N., Stauber, E. J., Olsen, C. E., Hippler, M., Mitchell-Olds, T., Gershenzon, J., and Vogel, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. U. S. A. 101: 4859–4864.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank David B. Collinge, Manabu Kamimura, Tamara van Mölken, Mari-Anne Newman, Carl Erik Olsen, and Vera Kuzina Poulsen for helpful comments on the manuscript. The work was supported by grants from The Danish Natural Science Research Council (21-02-0534) and The Danish Agency for Science, Technology and Innovation (274-06-0370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nielsen.

Additional information

Tsuneatsu Nagao deceased: Sept 24, 2002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, J.K., Nagao, T., Okabe, H. et al. Resistance in the Plant, Barbarea vulgaris, and Counter-Adaptations in Flea Beetles Mediated by Saponins. J Chem Ecol 36, 277–285 (2010). https://doi.org/10.1007/s10886-010-9758-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9758-6

Keywords

Navigation