Skip to main content
Log in

The significance of genome-wide transcriptional regulation in the evolution of stress tolerance

  • Original paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

It is widely recognized that stress plays an important role in directing the adaptive adjustment of an organism to changing environments. However, very little is known about the evolution of mechanisms that promote stress-induced variation. Adaptive transcriptional responses have been implicated in the evolution of tolerance to natural and anthropogenic stressors in the environment. Recent technological advances in transcriptomics provide a mechanistic understanding of biological pathways or processes involved in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and provide insight into the reaction norms of identified target genes in response to specific stressors. We argue that plasticity in gene expression reaction norms may be important in the evolution of stress tolerance and adaptation to environmental stress. This review highlights the consequences of transcriptional plasticity of stress responses within a single generation and concludes that gene promoters containing a TATA box are more capable of rapid and variable responses than TATA-less genes. In addition, the consequences of plastic transcriptional responses to stress over multiple generations are discussed. Based on examples from the literature, we show that constitutive over expression of specific stress response genes results in stress adapted phenotypes. However, organisms with an innate capacity to buffer stress display plastic transcriptional responses. Finally, we call for an improved integration of the concept of phenotypic plasticity with studies that focus on the regulation of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709

    Article  CAS  PubMed  Google Scholar 

  • Birnby DA, Link EM, Vowels JJ et al (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104

    CAS  PubMed  Google Scholar 

  • Blake WJ, Balazsi G, Kohanski MA et al (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24:853–865

    Article  CAS  PubMed  Google Scholar 

  • Calafato S, Swain S, Hughes S, Kille P, Sturzenbaum SR (2008) Knock down of Caenorhabditis elegans cutc-1 exacerbates the sensitivity toward high levels of copper. Toxicol Sci 106:384–391

    Article  CAS  PubMed  Google Scholar 

  • Cassada RC, Russell RL (1975) Dauerlarva, a post-embryonic developmental variant of nematode Caenorhabditis elegans. Dev Biol 46:326–342

    Article  CAS  PubMed  Google Scholar 

  • Catania F, Kauer MO, Daborn PJ et al (2004) World-wide survey of an accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol Ecol 13:2491–2504

    Article  CAS  PubMed  Google Scholar 

  • Cheviron ZA, Whitehead A, Brumfield RT (2008) Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol Ecol 17:4556–4569

    Article  CAS  PubMed  Google Scholar 

  • Cossins A, Fraser J, Hughes M, Gracey A (2006) Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J Exp Biol 209:2328–2336

    Article  CAS  PubMed  Google Scholar 

  • Cutter AD, Felix MA, Barriere A, Charlesworth D (2006) Patterns of nucleotide polymorphism distinguish temperate and tropical wild isolates of Caenorhabditis briggsae. Genetics 173:2021–2031

    Article  CAS  PubMed  Google Scholar 

  • Daborn PJ, Yen JL, Bogwitz MR et al (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256

    Article  CAS  PubMed  Google Scholar 

  • Dalley BK, Golomb M (1992) Gene-expression in the Caenorhabditis elegans Dauer Larva—developmental regulation of Hsp90 and other genes. Dev Biol 151:80–90

    Article  CAS  PubMed  Google Scholar 

  • David JR, Gibert P, Moreteau B (2004) Evolution of reaction norms. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, pp 50–63

    Google Scholar 

  • Denver DR, Morris K, Streelman JT et al (2005) The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat Genet 37:544–548

    Article  CAS  PubMed  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes. A primer. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, pp 1–9

    Google Scholar 

  • Dong YM, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. Plos Biol 4:1137–1146

    Article  CAS  Google Scholar 

  • Ellers J, Marien J, Driessen G, Van Straalen NM (2008) Temperature-induced gene expression associated with different thermal reaction norms for growth rate. J Exp Zool B Mol Dev Evol 310B:137–147

    Article  CAS  Google Scholar 

  • Fielenbach N, Antebi A (2008) C-elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165

    Article  CAS  PubMed  Google Scholar 

  • Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res-Fundam Mol Mech Mutagen 569:3–11

    Article  CAS  Google Scholar 

  • Frisancho AR (1975) Functional adaptation to high-altitude hypoxia. Science 187:313–319

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998

    Article  CAS  PubMed  Google Scholar 

  • Gracey AY, Fraser EJ, Li WZ et al (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 101:16970–16975

    Article  CAS  PubMed  Google Scholar 

  • Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226

    CAS  PubMed  Google Scholar 

  • Hensbergen PJ, Donker MH, Van Velzen MJM et al (1999) Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola). Eur J Biochem 259:197–203

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Ailion M, Poon S et al (2007) Genetic analysis of Dauer formation in Caenorhabditis briggsae. Genetics 177:809–818

    Article  CAS  PubMed  Google Scholar 

  • Janssens TKS (2008) The role of transcriptional regulation in micro-evolution of metal tolerance, PhD thesis, VU University

  • Janssens TKS, Marien J, Cenijn P et al (2007) Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 7:88

    Article  PubMed  Google Scholar 

  • Janssens TKS, Lopez RDR, Marien J et al (2008) Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field. Environ Sci Technol 42:3873–3878

    Article  CAS  PubMed  Google Scholar 

  • Jordan IK, Katz LS, Denver DR, Streelman JT (2008) Natural selection governs local, but not global, evolutionary gene coexpression networks in Caenorhabditis elegans. BMC Syst Biol 2:96

    Article  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu YX, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Klass M, Hirsh D (1976) Non-aging developmental variant of Caenorhabditis elegans. Nature 260:523–525

    Article  CAS  PubMed  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic properties influencing the evolvability of gene expression. Science 317:118–121

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lvarez OAA, Gutteling EW et al (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:2155–2161

    CAS  Google Scholar 

  • Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  CAS  PubMed  Google Scholar 

  • Luca F, Kashyap S, Southard C et al (2009) Adaptive variation regulates the expression of the human SGK1 Gene in response to stress. PLoS Genet 5:e1000489

    Article  PubMed  Google Scholar 

  • Marden JH (2008) Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100:111–120

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Sturzenbaum SR, Barenwaldt A, Kulas J, Steinberg CEW (2005) Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ Sci Technol 39:8324–8332

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Swain SC, Hoess S et al (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160

    Article  PubMed  Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:5734–5754

    Article  CAS  PubMed  Google Scholar 

  • Newman JRS, Ghaemmaghami S, Ihmels J et al (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846

    Article  CAS  PubMed  Google Scholar 

  • Nota B, Timmermans M, Franken C et al (2008) Gene expression analysis of Collembola in cadmium containing soil. Environ Sci Technol 42:8152–8157

    Article  CAS  PubMed  Google Scholar 

  • Owen J, Hedley BA, Svendsen C et al (2008) Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. Bmc Genomics 9:266

    Article  PubMed  Google Scholar 

  • Parsons PA (1987) Evolutionary rates under environmental-stress. Evol Biol 21:311–347

    Google Scholar 

  • Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CEW (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Posthuma L, Hogervorst RF, Van Straalen NM (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Arch Environ Contam Toxicol 22:146–156

    Article  CAS  PubMed  Google Scholar 

  • Posthuma L, Hogervorst RF, Joosse ENG, Van Straalen NM (1993) Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta. Evolution 47:619–631

    Article  Google Scholar 

  • Ren PF, Lim CS, Johnsen R et al (1996) Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391

    Article  CAS  PubMed  Google Scholar 

  • Roelofs D, Marien J, van Straalen NM (2007) Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta. Insect Biochem Mol Biol 37:287–295

    Article  CAS  PubMed  Google Scholar 

  • Roelofs D, Aarts MGM, Schat H, van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18

    Google Scholar 

  • Roelofs D, Janssens TKS, Timmermans M et al (2009) Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol 18:3227–3239

    Article  CAS  PubMed  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    Article  CAS  Google Scholar 

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  CAS  PubMed  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective sinauer. Sinauer Associates, Sunderland

    Google Scholar 

  • Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189–211

    Article  Google Scholar 

  • Sorensen JG, Loeschcke V (2002) Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster. Funct Ecol 16:379–384

    Article  Google Scholar 

  • Steinberg CEW, Sturzenbaum SR, Menzel R (2008) Genes and environment—striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161

    Article  CAS  PubMed  Google Scholar 

  • Sterenborg I (2003) Molecular physiology of metal tolerance in Orchesella cincta: the role of metallothionein, PhD thesis, Vrije Universiteit

  • Sturzenbaum SR, Andre J, Kille P, Morgan AJ (2009) Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc R Soc B Biol Sci 276:789–797

    Article  CAS  Google Scholar 

  • Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  CAS  PubMed  Google Scholar 

  • Swan KA, Curtis DE, McKusick KB et al (2002) High-throughput gene mapping in Caenorhabditis elegans. Genome Res 12:1100–1105

    CAS  PubMed  Google Scholar 

  • Tirosh I, Weinberger A, Carmi M, Barkai N (2006) A genetic signature of interspecies variations in gene expression. Nat Genet 38:830–834

    Article  CAS  PubMed  Google Scholar 

  • Tishkoff SA, Reed FA, Ranciaro A et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40

    Article  CAS  PubMed  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Walther D, Brunnemann R, Selbig J (2007) The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 3:216–229

    Article  CAS  Google Scholar 

  • Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Warren AJ (2002) Eukaryotic transcription factors. Curr Opin Struct Biol 12:107–114

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Puttmann-Holgado R, Thomas F et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ (2007) Variable gene expression in eukaryotes: a network perspective. J Exp Biol 210:1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E et al (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Bolotin E, Jiang T, Sladek FM, Martinez E (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389:52–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick Roelofs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelofs, D., Morgan, J. & Stürzenbaum, S. The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evol Ecol 24, 527–539 (2010). https://doi.org/10.1007/s10682-009-9345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9345-x

Keywords

Navigation