Skip to main content
Log in

Conflicting selection pressures on reproductive functions and speciation in plants

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Recent developments in the field of genetic divergence and speciation focus more on diversifying processes than on geographic mode of speciation (i.e. allopatric versus sympatric). Some of these new theories concern speciation driven by conflicts between the sexes. Even though it is well known that the two reproductive functions in plants can have different selective optima, sexual selection in plants is by many assumed to be weak or non-existent. Here we outline potential sexual conflicts in plants and discuss how selection pressures generated by such conflicts may influence genetic divergence. There is opportunity for conflicting selection pressures between individuals, such as manipulative pollen traits that enhance male reproductive success at the expense of the female reproductive function. Within individual plants, fitness of the male function (pollen export) and fitness of the female function (pollen import) may be optimised by different traits, leading to conflicting selection pressures in relation to pollen transfer. This may affect selection for floral specialisation versus floral generalisation in animal-pollinated species. We believe that selection pressures generated by sexual conflict need to be appreciated in order to fully understand microevolutionary processes which may lead to genetic divergence and speciation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner PA (2001) Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184

    Article  Google Scholar 

  • Alarcón R, Campbell DR (2000) Absence of conspecific pollen advantage in the dynamics of an Ipomopsis (Polemoniaceae) hybrid zone. Am J Bot 87:819–824

    Article  PubMed  Google Scholar 

  • Andersson S (2003) Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13:1–11

    Article  CAS  Google Scholar 

  • Armbruster WS (2005) Evolutionary and ecological aspects of specialised pollination: views from the artic to the tropics. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 260–282

    Google Scholar 

  • Armbruster WS, Edwards ME, Debevec EM (1994) Floral character displacement generates assemblage structure of western Australian triggerplants (Stylidium). Ecology 75:315–329

    Article  Google Scholar 

  • Arnold ML, Hamerick JL, Bennett BD (1993) Interspecific pollen competition and reproductive isolation in Iris. J Hered 84:13–16

    Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict: monographs in behavior and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Ashman T-L, Schoen DJ (1994) How long should flowers live? Nature 371:788–791

    Article  CAS  Google Scholar 

  • Barrett SCH (2002) Sexual interference of the floral kind. Heredity 88:154–159

    Article  PubMed  CAS  Google Scholar 

  • Bell JM, Karron JD, Mitchell RJ (2005) Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology 86:762–771

    Article  Google Scholar 

  • Bernasconi G, Ashman T-L, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh D, Hellriegel B (2004) Evolutionary ecology of the pre-zygotic stage. Science 303:971–974

    Article  PubMed  CAS  Google Scholar 

  • Biernaskie JM, Elle E (2007) A theory for exaggerated secondary sexual traits in animal pollinated plants. Evol Ecol 21:459–472

    Article  Google Scholar 

  • Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    Article  PubMed  CAS  Google Scholar 

  • Brandvain Y, Haig D (2005) Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat 166:330–338

    Article  PubMed  Google Scholar 

  • Chapman MA, Forbes DG, Abbott RJ (2005) Pollen competition among two species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily. Am J Bot 92:730–735

    Article  Google Scholar 

  • Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 76:2480–2484

    Article  PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94

    Article  PubMed  Google Scholar 

  • Darwin C (1862) The various contrivances by which orchids are fertilised by insects. Murray, London

    Google Scholar 

  • Delph LF, Ashman T-L (2006) Trait selection in flowering plants: how does sexual selection contribute? Integr Comp Biol 46:465–472

    Article  Google Scholar 

  • Diaz A, Macnair MR (1999) Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor M. guttatus. New Phytol 144:471–478

    Article  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann U, Doebeli M, Metz JAJ, Tautz D (2003) Adaptive speciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dobzhansky T (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744

    Article  Google Scholar 

  • Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Galen C, Gregory T (1989) Interspecific pollen transfer as a mechanism of competition: consequences of foreign pollen contamination for seed set in the alpine wildflower, Polemonium viscosum. Oecologia 81:120–123

    Article  Google Scholar 

  • Galen C, Shykoff JA, Plowright RC (1986) Consequences of stigma receptivity schedules for sexual selection in flowering plants. Am Nat 127:462–476

    Article  Google Scholar 

  • Gavrilets S (2000) Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403:886–889

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S, Waxman D (2002) Sympatric speciation by sexual conflict. Proc Natl Acad Sci USA 99:10533–10538

    Article  PubMed  CAS  Google Scholar 

  • Gorelick R (2001) Did insect pollination cause increased seed plant diversity? Biol J Linn Soc 74:407–427

    Article  Google Scholar 

  • Gori DF (1989) Floral color change in Lupinus argenteus (Fabaceae): why should plants advertise the location of unrewarding flowers to pollinators? Evolution 43:870–881

    Article  Google Scholar 

  • Grant V (1949) Pollination systems as isolating mechanisms in angiosperms. Evolution 3:82–97

    Article  PubMed  CAS  Google Scholar 

  • Grant V (1994) Modes and origins of mechanical and ethological isolation in angiosperms. Proc Natl Acad Sci USA 91:3–10

    Article  PubMed  CAS  Google Scholar 

  • Härdling R, Nilsson P (1999) Parent-offspring and sexual conflicts in the evolution of angiosperm seeds. Oikos 84:27–34

    Article  Google Scholar 

  • Härdling R, Smith HG, Jormalainen V, Tuomi J (2001) Resolution of evolutionary conflicts: costly behaviours enforce the evolution of cost-free competition. Evol Ecol Res 3:829–844

    Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Article  Google Scholar 

  • Howard DJ (1999) Conspecific sperm and pollen precedence and speciation. Annu Rev Ecol Syst 30:109–132

    Article  Google Scholar 

  • Huber FK, Kaiser R, Sauter W, Schiestl FP (2005) Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575

    Article  PubMed  Google Scholar 

  • Johnson SD (2006) Pollinator-driven speciation in plants. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, pp 295–310

    Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  PubMed  Google Scholar 

  • Jones ML (2002) Ethylene responsiveness in carnation style is associated with stigma receptivity. Sex Plant Reprod 15:107–112

    Article  CAS  Google Scholar 

  • Klips RA (1999) Pollen competition as a reproductive isolating mechanism between two sympatric Hibiscus species (Malvaceae). Am J Bot 86:269–272

    Article  Google Scholar 

  • Koene JM, Schulenburg H (2005) Shooting darts: sexual conflict drives a coevolutionary arms race in hermaphroditic land snails. BMC Evol Biol 5:25

    Article  PubMed  Google Scholar 

  • Kress WJ (1981) Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Syst Bot 6:101–112

    Article  Google Scholar 

  • Lankinen Å, Kiboi S (2007) Pollen-donor identity affects timing of stigma receptivity in Collinsia heterophylla (Plantaginaceae): a sexual conflict during pollen competition? Am Nat 170:854–863

    Article  PubMed  Google Scholar 

  • Lankinen Å, Hellriegel B, Bernasconi G (2006) Sexual conflict over floral receptivity. Evolution 60:2454–2465

    PubMed  Google Scholar 

  • Lyons EE, Waser NM, Price MV, Antonovics J, Motten AF (1989) Sources of variation in plant reproductive success, and implications for concepts of sexual selection. Am Nat 134:409–433

    Article  Google Scholar 

  • Marshall JL, Arnold ML, Howard DJ (2002) Reinforcement: the road not taken. Trends Ecol Evol 17:558–563

    Article  Google Scholar 

  • Michiels NK (1998) Mating conflicts and sperm competition in simultaneous hermaphrodites. In: Birkhead TR, Moller AP (eds) Sperm competition and sexual selection. Academic, London, pp 219–255

    Chapter  Google Scholar 

  • Morgan MT (1994) Models of sexual selection in hermaphrodites, especially plants. Am Nat 144:S100–S125

    Article  Google Scholar 

  • Moyle LC, Olsen MS, Tiffin P (2004) Patterns of reproductive isolation in three angiosperm genera. Evolution 58:1195–1208

    PubMed  Google Scholar 

  • Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23

    Article  PubMed  Google Scholar 

  • Murcia C, Feinsinger P (1996) Interspecific pollen loss by hummingbirds visiting flower mixtures: effects of floral architecture. Ecology 77:550–560

    Article  Google Scholar 

  • Murfett J, Strabala TJ, Zurek DM, Mou BQ, Beecher B, McClure BA (1996) S RNase and interspecific pollen rejection in the genus Nicotiana: multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8:943–958

    Article  PubMed  CAS  Google Scholar 

  • Murphy SD, Aarssen LW (1995) In vitro allelopathic effects of pollen from three Hieracium species (Asteraceae) and pollen transfer to sympatric Fabaceae. Am J Bot 82:37–45

    Article  Google Scholar 

  • O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574

    Article  PubMed  CAS  Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, New York, pp 123–166

    Google Scholar 

  • Parker GA, Partridge L (1998) Sexual conflict and speciation. Philos Trans Royal Soc Lond B 353:261–274

    Article  CAS  Google Scholar 

  • Pellmyr O (1992) Evolution of insect pollination and angiosperm diversification. Trends Ecol Evol 7:46–49

    Article  Google Scholar 

  • Petanidou T, Potts SG (2005) Mutual use of resources in Mediterranean plant-pollinator communities: how specialized are pollination webs? In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 220–244

    Google Scholar 

  • Queller DC (1984) Models of kin selection on seed provisioning. Heredity 53:151–165

    Article  Google Scholar 

  • Queller DC (1994) Male–female conflict and parent-offspring conflict. Am Nat 144:S84–S99

    Article  Google Scholar 

  • Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534

    PubMed  Google Scholar 

  • Rice WR (1996) Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381:232–234

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Holland B (1997) The enemies within: intragenomic conflict, interlocus contest evolution (ICE) and the intraspecific Red Queen. Behav Ecol Sociobiol 41:1–10

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Sargent RD, Otto SP (2006) The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am Nat 167:67–80

    Article  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schoen DJ, Ashman T-L (1995) The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution 49:131–139

    Article  Google Scholar 

  • Shaw RG, Waser NM (1994) Quantitative genetic interpretations of postpollination reproductive traits in plants. Am Nat 143:617–635

    Article  Google Scholar 

  • Skogsmyr I, Lankinen Å (2002) Sexual selection: an evolutionary force in plants? Biol Rev 77:537–562

    Article  PubMed  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Stebbins GL (1981) Why are there so many species of flowering plants? Bioscience 31:573–577

    Article  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Mol Biol 48:461–491

    Article  CAS  Google Scholar 

  • Thompson JD (2001) How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologia 126:386–394

    Article  Google Scholar 

  • Thomson JD, Andrews BJ, Plowright RC (1981) The effect of a foreign pollen on ovule development in Diervilla lonicera (caprifoliaceae). New Phytol 90:777–783

    Article  Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1997) Conflict between parent and offspring in plants: predictions, processes and evolutionary consequences. Curr Biol 72:932–939

    Google Scholar 

  • Vázquez DP, Aizen MA (2005) Community-wide pattern of specialization in plant-pollinator interactions revealed by null models. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 200–219

    Google Scholar 

  • Waser NM (1978) Interspecific pollen transfer and competition between co-occurring plant species. Oecologia 36:223–236

    Article  Google Scholar 

  • Waser NM, Campbell DR (2004) Ecological speciation in flowering plants. In: Dieckmann U, Metz H, Doebeli M, Tautz D (eds) Adaptive Speciation. Cambridge University Press, Cambridge, pp 264–277

    Google Scholar 

  • Waser NM, Fugate ML (1986) Pollen precedence and stigma closure: a mechanism of competition for pollination between Delphinium nelsonii and Ipomopsis aggregata. Oecologia 70:573–577

    Article  Google Scholar 

  • Waser NM, Ollerton J (eds) (2005) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago

    Google Scholar 

  • Waser NM, Price MV (1993) Crossing distance effects on prezygotic performance in plants: an argument for female choice. Oikos 68:303–308

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Waxman D, Gavrilets S (2005) 20 questions on adaptive dynamics. J Evol Biol 18:1139–1154

    Article  PubMed  CAS  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–709

    Article  PubMed  CAS  Google Scholar 

  • Willson MF (1979) Sexual selection in plants. Am Nat 133:777–790

    Article  Google Scholar 

  • Wolf PG, Campbell DR, Waser NM, Sipes SD, Toler TR, Archibald JK (2001) Tests of pre- and postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). Am J Bot 88:213–219

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Härdling, J. Madjidian, G.P. Svensson, N. Waser and three anonymous reviewers for insightful comments on the manuscript, and participants at the Speciation workshop in Lund, Sweden 2006 for inspiration. This work was supported by a grant from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åsa Lankinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankinen, Å., Larsson, M.C. Conflicting selection pressures on reproductive functions and speciation in plants. Evol Ecol 23, 147–157 (2009). https://doi.org/10.1007/s10682-007-9227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9227-z

Keywords

Navigation