Skip to main content
Log in

Identification of quantitative trait loci associated with drought tolerance traits in rice (Oryza sativa L.) under PEG and field drought stress

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Two recombinant inbred line F10 rice populations (IAPAR-9/Akihikari and IAPAR-9/Liaoyan241) were used to identify quantitative trait loci (QTLs) for ten drought tolerance traits at the budding and early seedling stage under polyethylene glycol-induced drought stress, and two traits of leaf rolling index (LRI) and leaf withering degree (LWD) under field drought stress. The results showed that the drought-tolerance capacity of IAPAR-9 was stronger than that of Akihikari and Liaoyan241. Thirty-four QTLs for 12 drought tolerance traits were detected, and among them, in the IAPAR-9/Akihikari population, qLRI9-1 and qLRI10-1 for LRI were repeatedly detected in RM3600-RM553 on chromosome 9 and in RM6100-RM3773 on chromosome 10, respectively, at two times points of July 31 and August 13 in 2014. The two QTLs are stable against the environmental impact, and qLRI9-1 and qLRI10-1 explained 6.77–13.66% and 5.01–8.32% of the phenotypic variance, respectively, at the two times points. qLWD9-2 for LWD in the IAPAR-9/Liaoyan241 population contributed 8.73% of variation was detected in the same marker interval with the qLRI9-1, and qLRI1-1 for LRI and qLWD1-1 for LWD were located in the same marker interval RM11054-RM5646 on chromosome 1, which contributed 18.82 and 5.78% of phenotype variation respectively. qGV3 for germination vigor and qRGV3 for relative germination vigor at the budding stage were detected in the same marker interval RM426-RM570 on chromosome 3, which explained 14.98 and 16.30% of the observed phenotypic variation respectively, representing major QTLs. The above-mentioned stable or major QTLs regions could be useful for molecular marker assisted selection breeding, fine mapping, and cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS et al (2016) Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach. Front Plant Sci 7:1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000 Res. https://doi.org/10.12688/f1000research.7678.1

    Google Scholar 

  • Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J et al (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Dixit S, Huang BE, Sta Cruz MT, Maturan PT, Ontoy JC, Kumar A (2014) QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach. PLoS ONE 9(10):e109574

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu HH, Xiong LZ (2014) Genetic engineering and breeding of drought resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Hu SP, Yang H, Zhou GH (2006) Relationship between coleoptiles length and drought resistance index of rice and their QTLs. Chin J Rice Sci 20(1):19–24

    Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H et al (2013) OsNAC5 over expression enlarges root diameter in rice plants leading to enhanced drought tolerance and increase grain yield in the field. Plant Biotechnol 11(1):101–114

    Article  CAS  Google Scholar 

  • Jiang X, Ma XS, Luo LJ, Liu HY (2016) QTL Mapping of phenotypic traits under drought stress simulated by PEG-6000 in Rice Seedlings. Crops 5:31–37. https://doi.org/10.16035/j.issn.1001-7283.2016.05.006

    Google Scholar 

  • John ME (1992) An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res 20(9):2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Article  Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Zhang J, Siopongco J, Sarkarung S, Nguyen HT, Wade LJ (2002) Effects of phenotyping environment on identification of QTL for rice root morphology under anaerobic conditions. Crop Sci 42:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kosambi D (1994) The estimation of map distance from recombination values. Annu Eugen 12:172–175

    Article  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR et al (2017) Double over expression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15(4):458–471

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Yoon S, Kim YS, Kim JK (2017) Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signal Behav 12(1):e1268311. https://doi.org/10.1080/15592324.2016.1268311

    Article  PubMed  Google Scholar 

  • Li Y, Ma J, Wang HZ, Zhang RP, Li XY (2005) Studies on screening of the drought resistance assessment indexes and comprehensive evaluation of rice varieties during seedling stage. Southwest China J Agric Sci 18(3):250–255

    CAS  Google Scholar 

  • Li HH, Ribaut JM, Li Z, Wang JK (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in bi-parental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li J, Wang D, Xie Y, Zhang H, Hu G, Li J, Dai A, Liu L, Li Z (2011) Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes. J Genet Genom 38(11):547–556

    Article  CAS  Google Scholar 

  • Li QC, Li YX, Yang ZZ, Liu C, Liu ZZ, Li CH et al (2013) QTL mapping for plant height and ear height by using multiple related RIL populations in Maize. Acta Agron Sin 39(9):1521–1529

    Article  CAS  Google Scholar 

  • Li J, Han Y, Liu L, Chen Y, Du Y, Zhang J, Sun H, Zhao Q (2015) qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. J Exp Bot 66(9):2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zou X, Zhang C, Shao Q, Liu J, Liu B et al (2016) OsLBD3-7 over expression induced adaxially rolled leaves in rice. PLoS ONE 11(6):e0156413. https://doi.org/10.1371/journal.pone.0156413

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Wang LQ, He YQ (2007) Comparison of quantitative trait locis controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ 26(2):161–166

    Google Scholar 

  • Liu YQ, Zhao HW, Wang JG, Liu HL, Wang J, Jia Y (2013) QTL mapping for rice seedling morphological traits under simulated drought stress conditions. Crops. https://doi.org/10.16035/j.issn.1001-7283.2013.02.035

    Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R et al (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerance in Arabidopsis. J Exp Bot 63:2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M et al (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R et al (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu P, Li Z, Zhang HL (2003) QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chin Sci Bull 48(14):2718–2724

    Article  Google Scholar 

  • Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T (2010) Fine-mapping of qRL6, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions. Theor Appl Genet 121(3):535–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTLs associated with drought avoidance in uplands rice. Plant Mol Biol 48(5–6):683–695

    Article  CAS  PubMed  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J10(7):792–805

    Article  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Salunkhe AS, Poornima R, Prince KS, Kanagaraj P, Sheeba JA, Amudha K, Suji KK, Senthil A, Babu RC (2011) Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Mol Biotechnol 49(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Sandhu N, Jain S, Kumar A, Mehla BS, Jain R (2013) Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomictraits for aerobic adaptation. BMC Genet 29(14):104

    Article  Google Scholar 

  • Sandhu N, Raman KA, Torres RO, Audebert A, Dardou A, Kumar A et al (2016) Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol 171:2562–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng JS, Cao GL, Han LZ (2000) Brazil upland rice in China. World Agric (Chinese) 256(8):18–20

    Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S et al (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Spitzer M, Wildenhain J, Rappsilber J, Tyers M (2014) BoxPlotR: a web tool for generation of box plots. Nat Methods 11(2):121–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suji KK, Biji KR, Poornima R, Prince KS, Amudha K, Kavitha S et al (2012) Mapping QTLs for plant phenology and production traits using indica rice (Oryza sativa L.) lines adapted to rainfed environment. Mol Biotechnol 52:151–160

    Article  CAS  PubMed  Google Scholar 

  • Swamy BP, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P et al (2013) Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS ONE 8(5):e62795

    Article  PubMed  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62(8):2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin 35(2):239–245

    Article  CAS  Google Scholar 

  • Wang H, Cao LY, Cheng SH (2008) Correlation analysis and QTL mapping of some physiological traits related to drought resistance in Rice. Chin J Rice Sci 22(5):477–484

    CAS  Google Scholar 

  • Xiao YL, Yu CY, Lei JG et al (2012) Screening of rice germplasm accessions for vegetative drought tolerance. Acta Agri Univ Jiangxiensis 34(3):0428–0433

    Google Scholar 

  • Xu L, Liu GG, Yang DL, Qian J, Sun HW, Yang PZ et al (1997) The breeding and spreading of LiaoYan241, an superior japonica rice new variety. Reclaiming and Rice Cultivation

  • Yang ZZ, Li YX, Liu C, Liu ZZ, Li CH, Li QC et al (2012) QTL analysis of tassel-related traits in Maize (Zea mays L.) using multiple connected populations. Acta Agron Sin 38(8):1435–1442

    Article  CAS  Google Scholar 

  • Yang ZL, Dai GX, Zhai RR, Lin ZC, Cheng SH (2013) QTL Analysis of rice grain shape traits by using recombinant inbredLines from super hybrid rice Xieyou 9308 in multi environments. Chin J Rice Sci 5:482–490

    Google Scholar 

  • Yang CH, Li DY, Liu X, Ji CJ, Hao LL, Zhao XF et al (2014) OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol 14:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang SQ, Li WQ, Miao H, Gan PF, Qiao L, Chang YL, Shi CH, Chen KM (2016) RFL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice 9(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP et al (2015) A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.). Plant Biol 17(2):437–448

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Guo SW, Song N, Zhang CL, Li X, Shen QR (2006) Effects of nitrogen forms and water stress on photosynthesis and water use efficiency of rice at seeding-tillering stage. Plant Nutr Fertil Sci 12(3):334–339

    CAS  Google Scholar 

  • Zhou LG, Liu ZC, Liu YH, Kong DY, Li TF, Yu SW et al (2016a) A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep 6:30264. https://doi.org/10.1038/srep30264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Dong GC, Tao YJ, Chen C, Yang B, Wu Y et al (2016b) Mapping quantitative trait loci associated with root traits using sequencing-based genotyping chromosome segment substitution lines derived from 9311 and nipponbare in Rice (Oryza sativa L.). PLoS ONE 11(3):e0151796

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Huang DR, Fan YY, Zhang ZH, Ying JZ, Zhuang JY (2016) Detection of QTLs for yield heteros is in rice using a RIL population and its test cross population. Int J Genom 2016:2587823

    Google Scholar 

  • Zou DT, Wang J, Wang JG, Liu HL, Liu YQ, Jia Y (2014) QTL analysis of flag leaf characteristics and ears weight in rice. J Northeast Agric Univ 45(1):23–28

    Google Scholar 

Download references

Acknowledgements

We thank the Chinese National Germplasm Bank for providing the rice seeds. This work was supported by the National Key Research and Development Plan (2016YFD0100101, 2016YFD0100301), the International Cooperation Project from the National Institute of Crop Science, RDA (PJ012113), the National Key Technology Research and Development Program of China (2013BAD01B02-2, 2013BAD01B0101-02, 2015BAD01B01-1), the CAAS Science and Technology Innovation Program, the National Infrastructure for Crop Germplasm Resources (NICGR2016-001), and the Protective Program for Crop Germplasm of China (2016NWB036-01, 2016NWB036-12-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchang Sun, Dongjin Shin or Longzhi Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Wang, J., Li, Y. et al. Identification of quantitative trait loci associated with drought tolerance traits in rice (Oryza sativa L.) under PEG and field drought stress. Euphytica 214, 74 (2018). https://doi.org/10.1007/s10681-018-2138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2138-y

Keywords

Navigation