Skip to main content
Log in

Current applications of wheat and wheat–alien precise genetic stocks

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A comprehensive collection of wheat aneuploids, whole chromosome substitutions (both intervarietal and interspecific) and wheat–alien addition lines, along with various introgression and near-isogenic lines, has been created over a period of years, primarily to provide the means of localizing the genes underpinning traits and to introduce novel genes into the bread wheat genome. For a time, interest in this class of genetic material was on the wane, but more recently it has revived in the context, for example, of localizing DNA-based markers, designing chromosome-specific bacterial artificial chromosome libraries, and establishing functional differences between alleles and homoeoalleles. Here, a brief review is provided of recent applications of precise genetic stocks in the field of molecular genetics, functional genetics and genomics of the Triticeae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    CAS  PubMed  Google Scholar 

  • Arbuzova VS, Maystrenko OI, Popova OM (1998) Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’. Cereal Res Commun 26:39–46

    Google Scholar 

  • Benito C, Silva-Navas J, Fontecha G, Hernández-Riquer MV, Eguren M, Salvador N, Gallego FJ (2010) From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil 327:107–120

    CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EY, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    CAS  PubMed  Google Scholar 

  • Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubaláková M, Simková H, Batley J, Doležel J, Hernandez P, Edwards D (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    CAS  PubMed  Google Scholar 

  • Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906

    CAS  PubMed  Google Scholar 

  • Boisson M, Mondon K, Torney V, Nicot N, Laine A-L, Bahrman N, Gouy A, Daniel-Vedele F, Hirel B, Sourdille P, Dardevet M, Ravel C, Le Gouis J (2005) Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor Appl Genet 110:932–940

    CAS  PubMed  Google Scholar 

  • Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome—genetic diversity and mapping. BMC Genom 10:578

    Google Scholar 

  • Bolton MD, Kolmer JA, Xu WW, Garvin DF (2008) Lr34-Mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact 21:1515–1527

    CAS  PubMed  Google Scholar 

  • Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    CAS  PubMed  Google Scholar 

  • Cao AZ, Wang XE, Chen YP, Zou XW, Chen PD (2006) A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed 125:201–205

    CAS  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Google Scholar 

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–344

    CAS  PubMed  Google Scholar 

  • Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Grossi MR, Bitti A (2014) Genomes, chromosomes and genes of perennial Triticeae of the genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and ‘precision’ breeding. In: Tuberosa R, Graner A, Frison E (eds) Genomics of Plant Genetics Resources. Vol. 2: Crop Productivity, Food Security and Nutritional Quality, vol 2. Springer, New York, pp 333–358

    Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  PubMed  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    CAS  PubMed  Google Scholar 

  • Chen PD, Liu WX, Yuan JH, Wang XE, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi LL, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium head light. Theor Appl Genet 111:941–948

    PubMed  Google Scholar 

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    CAS  Google Scholar 

  • Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172:1277–1285

    PubMed Central  PubMed  Google Scholar 

  • Dobrovolskaya OB, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    CAS  Google Scholar 

  • Dobrovolskaya O, Boeuf C, Salse J, Pont C, Sourdille P, Bernard M, Salina E (2011) Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. Theor Appl Genet 123:1145–1157

    CAS  PubMed  Google Scholar 

  • Doležel J, Vrána J, Šafář J, Bartoš J, Kubaláková M, Simková H (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12:397–416

    PubMed Central  PubMed  Google Scholar 

  • Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abstr 6

  • Du WL, Wang J, Lu M, Sun S, Chen X, Zhao J, Yang Q, Wu J (2013a) Molecular cytogenetic identification of a wheat-Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed 31:879–888

    Google Scholar 

  • Du WL, Wang J, Pang YH, Li Y, Chen X, Zhao J, Yang Q, Wu J (2013b) Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS ONE 8:e53921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dyck PL, Samborski DJ (1968) Genetics of resistance to leaf rust in the common wheat varieties Webster, Loros, Brevit, Carina, Malakof and Centenario. Can J Genet Cytol 10:7–17

    Google Scholar 

  • Efremova TT, Arbuzova VS, Leonova IN, Makhmudova K (2011) Multiple allelism in the Vrn-B1 locus of common wheat. Cereal Res Commun 39:12–21

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • EWAC Newsletter (1968) In: Proceedings of 1st EWAC meeting, Cambridge, 1967

  • EWAC Newsletter (1971) In: Proceedings of 2nd EWAC meeting, Weihenstephan, 1970

  • Feuillet C, Eversole K (2007) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    CAS  PubMed  Google Scholar 

  • Friebe B, Tuleen N, Jiadg J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742

    CAS  PubMed  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Google Scholar 

  • Friebe B, Raupp WJ, Gill BS (2001) Alien genes in wheat improvement. In: Bedo Z, Lang L (eds) Wheat in a global environment. Kluver Academic Publisher, Dordrecht, pp 709–720

    Google Scholar 

  • Gaidalenok RF, Khrabrova MA, Litkovskaya NP, Kovaleva NM (1995) Development and use of lines with substituted chromosomes in Saratovskaya 29/Janetzkis Probat. EWAC Newsl 9:128–131

    Google Scholar 

  • Gill KS, Arumuganathan K, Le JH (1999) Isolating individual wheat (Triticum aestivum) chromosome arm by flow cytometric analysis of ditelosomic lines. Theor Appl Genet 98:1248–1252

    Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci USA 108:7657–7658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giura A, Ittu G (1986) Genetic analysis of protein content in the wheat line F26-70 using whole chromosome substitutions. Cereal Res Commun 14:5–10

    Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7:e40695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo DW, Ma YZ, Li LC, Chen YF (2006) Flow sorting of wheat chromosome arms from the ditelosomic line 7BL. Plant Mol Biol Rep 24:23–31

    CAS  Google Scholar 

  • Hamzehzarghani H, Paranidharan V, Abu-Nada Y, Kushalappa AC, Mamer O, Somers D (2008) Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance to fusarium head blight. Can J Plant Sci 88:789–797

    Google Scholar 

  • Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, Mayer KF (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    CAS  PubMed  Google Scholar 

  • Himi E, Noda K (2004) Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot 55:365–375

    CAS  PubMed  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    CAS  PubMed  Google Scholar 

  • Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genom 9:400

    Google Scholar 

  • Huang XQ, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305

    CAS  PubMed  Google Scholar 

  • Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18. Phytopathology 97:1083–1093

    CAS  PubMed  Google Scholar 

  • Iqbal N, Eticha F, Khlestkina EK, Weidner A, Röder MS, Börner A (2007) The use of SSR markers to identify and map alien segments carrying genes for effective resistance to leaf rust in bread wheat. Plant Genet Res 5:100–103

    CAS  Google Scholar 

  • Islam AKMR (1983) Ditelosomic additions of barley chromosomes to wheat. In: Sakamato S (ed) Proceedings of 6th international wheat genetics symposium, Maruzen, Kyoto, pp 233–238

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Google Scholar 

  • Islam N, Woo SH, Tsujimoto H, Kawasaki H, Hirano H (2002) Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L). Proteomics 2:1146–1155

    CAS  PubMed  Google Scholar 

  • Islam N, Tsujimoto H, Hirano H (2003) Wheat proteomics: relationship between fine chromosome deletion and protein expression. Proteomics 3:307–316

    CAS  PubMed  Google Scholar 

  • Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Cíhalíková J, Sourdille P, Simková H, Faivre-Rampant P, Hribová E, Bernard M, Lukaszewski A, Dolezel J, Chalhoub B (2006) Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    CAS  PubMed  Google Scholar 

  • Jia H, Cho S, Muehlbauer GJ (2009) Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Mol Plant Microbe Interact 22:1366–1378

    CAS  PubMed  Google Scholar 

  • Khlestkina EK (2010) Regulatory-target gene relationships in allopolyploid and hybrid genomes. In: Urbano KV (ed) Advances in genetics research, vol 3. NOVA Science Publishers, New York, pp 311–328

    Google Scholar 

  • Khlestkina EK, Shoeva OY (2014) Intron loss in the chalcone-flavanone isomerase gene of rye. DOI, Mol Breed. doi:10.1007/s11032-013-0009-8

    Google Scholar 

  • Khlestkina EK, Salina EA, Pshenichnikova TA, Arbuzova VS, Koval SF (2000) Analysis of near-isogenic lines of common wheat carrying the dominant alleles of Bg, Hg, and Rg1 genes using microsatellite and protein markers. Russ J Genet 36:1153–1158

    CAS  Google Scholar 

  • Khlestkina EK, Myint Than MH, Pestsova EG, Röder MS, Malyshev S, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequencing tags. Theor Appl Genet 109:725–732

    CAS  PubMed  Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat. BMC Plant Biol 8:88

    PubMed Central  PubMed  Google Scholar 

  • Khlestkina EK, Tereshchenko OY, Salina EA (2009a) Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol Genet Genom 282:475–485

    CAS  Google Scholar 

  • Khlestkina EK, Giura A, Röder MS, Börner A (2009b) A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165:579–585

    CAS  Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010a) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258

    CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2010b) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol Breed 25:125–132

    CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Börner A (2010c) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69

    CAS  Google Scholar 

  • Koval SF (1997) The catalog of near-isogenic lines of Novosibirskaya-67 common wheat and principles of their use in experiments. Genetika 33:1168–1173

    Google Scholar 

  • Kubaláková M, Vrána J, Cíhalíková J, Simková H, Dolezel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    PubMed  Google Scholar 

  • Kubaláková M, Valárik M, Bartoš J, Vrána J, Číhalíková J, Molnár-Láng M, Dolezel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905

    PubMed  Google Scholar 

  • Kuspira J, Unrau J (1958) Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can J Plant Sci 38:119–205

    Google Scholar 

  • Laikova LI, Arbuzova VS, Efremova TT, Popova OM (2004) Construction of immune lines with complex resistance to leaf rust and powdery mildew in common spring wheat cultivar Saratovskaya 29. Rus J Genet 40:506–509

    CAS  Google Scholar 

  • Law CN, Wolfe MC (1966) Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470

    Google Scholar 

  • Leonova IN, Röder MS, Budashkina EB, Kalinina NP, Salina EA (2002) Molecular analysis of leaf rust-resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. Russ J Genet 38:1397–1403

    CAS  Google Scholar 

  • Leonova I, Börner A, Budashkina E, Kalinina N, Unger O, Röder M, Salina E (2004) Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breed 123:93–95

    CAS  Google Scholar 

  • Leonova IN, Röder MS, Kalinina N, Budashkina EB (2008) Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum & #x00D7; Triticum timopheevii introgression lines. Russ J Genet 44:1431–1437

    CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    CAS  Google Scholar 

  • Loukoianov A, Yan L, Blechi A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma CY, Gao LY, Li N, Li XH, Ma WJ, Appels R, Yan Y-M (2012) Proteomic analysis of albumins and globulins from wheat variety Chinese Spring and its fine deletion line 3BS-8. Int J Mol Sci 13:13398–13413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y (2010) Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res 17:211–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schön CC, Dolezel J, Bauer E, Mayer KF, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1947) The genome approach in radical wheat breeding. J Am Soc Agron 39:1011–1026

    Google Scholar 

  • Molnar-Lang M, Line G, Szakacs E (2014) Wheat–barley hybridization: the last 40 years. Euphytica 195:315–329

    CAS  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pestsova EG, Röder MS, Börner A (2006) Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    PubMed  Google Scholar 

  • Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Förster J, Léon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660

    CAS  Google Scholar 

  • Pugsley AT (1971) A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res 22:21–31

    Google Scholar 

  • Pugsley AT (1972) Additional genes inhibiting winter habit in wheat. Euphytica 21:547–552

    Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NL, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Safár J, Simková H, Kubaláková M, Cíhalíková J, Suchánková P, Bartos J, Dolezel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    PubMed  Google Scholar 

  • Sears ER (1944) Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare. Genetics 29:232–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sears ER (1946) Isochromosomes and telocentrics in Triticum vulgare. Genetics 31:229–230

    CAS  PubMed  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Google Scholar 

  • Shcherban AB, Khlestkina EK, Efremova TT, Salina EA (2013) The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica 141:133–141

    CAS  PubMed  Google Scholar 

  • She M-Y, Guo D-W, Li L-C, Xu Z-S, Chen M, Qu Y-Y, Ma Y-Z (2008) Optimizing protocol of flow sorting chromosome 5DL (Triticum aestivum L.) and chromosome-specific BIBAC library construction. Sci Agric Sin 41:354–361

    CAS  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoeva OY, Khlestkina EK, Berges H, Salina EA (2014) The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene. doi:10.1016/j.gene.2014.01.008

  • Silkova OG, Dobrovolskaya OB, Dubovets NI, Adonina IG, Kravtsova LA, Röder MS, Salina EA, Shchapova AI, Shumny VK (2006) Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Russ J Genet 42:645–653

    CAS  Google Scholar 

  • Simón MR, Worland CA, Struik PC (2005) Chromosomal location of genes encoding for resistance to septoria tritici blotch (Mycosphaerella graminicola) in substitution lines of wheat. Neth J Agric Sci 53:113–129

    Google Scholar 

  • Simón MR, Khlestkina EK, Castillo NS, Börner A (2010) Mapping quantitative resistance to septoria tritici blotch in spelt wheat. Eur J Plant Pathol 128:317–324

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková Jб, Molnár-Láng M, Endo TR, Dolezel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659

    PubMed  Google Scholar 

  • Tereshchenko OY (2012) Genetic bases of anthocyanin pigmentation in isogenic and introgression lines of common wheat (Triticum aestivum L.). PhD thesis, ICG, Novosibirsk

  • Tereshchenko OY, Pshenichnikova TA, Salina EA, Khlestkina EK (2012a) Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Res Commun 40:210–214

    CAS  Google Scholar 

  • Tereshchenko OY, Gordeeva EI, Arbuzova VS, Börner A, Khlestkina EK (2012b) The D genome carries a gene determining purple grain colour in wheat. Cereal Res Commun 40:334–341

    CAS  Google Scholar 

  • Tereshchenko OY, Arbuzova VS, Khlestkina EK (2013) Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J Cereal Sci 57:10–13

    CAS  Google Scholar 

  • Timonova EM, Leonova IN, Röder MS, Salina E (2013) Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol Breed 31:123–136

    Google Scholar 

  • Tóth B, Galiba G, Fehér E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    PubMed  Google Scholar 

  • Trubacheeva N, Badaeva ED, Adonina IG, Belova LI, Devyatkina EP, Pershina LA (2008) Production and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp gussoneanum)-Triticum aestivum. Russ J Genet 44:67–73

    CAS  Google Scholar 

  • Ying J, Chen PD (2000) Studies of development of disomic addition lines of Triticum aestivum-Haynaldia villosa via AABBDDDD octaploid. Yi Chuan Xue Bao 27:506–510

    CAS  PubMed  Google Scholar 

  • Zhang W, Gao AL, Zhou B, Chen PD (2006) Screening and applying wheat microsatellite markers to trace individual Haynaldia villosa chromosomes. Yi Chuan Xue Bao 33:236–243

    CAS  PubMed  Google Scholar 

  • Zhukovsky PM, Khvostova VV (eds) (1971) Cytogenetics of wheat and its hybrids. Nauka Press, Moscow

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Robert Koebner (www.smartenglish.co.uk) for linguistic advice and valuable comments during the preparation of this manuscript; RFBR (No 12-04-33027), RAS (MCB Programme), the grant of the President of the Russian Federation (No MD-2615.2013.4), the Ministry of Education and Science of the Russian Federation and the State Budget Programme (No. VI.53.1.5.) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena K. Khlestkina.

Additional information

This article is dedicated to Dr. Ludmilla I. Laikova (1930–2013), who successfully worked for many years on producing and studying wheat and wheat–alien precise genetic stocks, and to Dr. Sergey F. Koval (1935–2012), who created a comprehensive collection of Novosibirskaya 67 near-isogenic lines (well-known as ‘ANK’ lines).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K. Current applications of wheat and wheat–alien precise genetic stocks. Mol Breeding 34, 273–281 (2014). https://doi.org/10.1007/s11032-014-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0049-8

Keywords

Navigation