Skip to main content

Advertisement

Log in

Genetic distance and specific combining ability in cassava

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is an important source of energy in the tropics. Its starchy roots are valuable for food security as well as for different industries. Cassava is an outcrossing crop and its breeding is based on the use of heterozygous progenitors. Non-additive genetic effects are important for fresh root yield (FRY) and can be exploited through reciprocal recurrent selection. Results from three diallel studies (with 9-10 progenitors), conducted at three different environments (sub-humid, acid soils and mid-altitude valleys) in Colombia, have already been published for FRY. In this article, phenotypic analysis of dry matter yield (DMY) was also conducted. Specific combining ability effects and actual FRY and DMY data was linked to Nei’s genetic distances which were estimated through a set of 95 SNPs diagnostic of the cassava diversity. Results from regression analyses indicated inconsistent and generally weak associations between genetic distances and performance of the F1 families per se (r2 values ranging from 0.01 to 0.10) and specific combining ability effects (r2 values ranging from 0.00 to 0.28) for the two variables analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SCA:

Specific combining ability

GCA:

General combining ability

FRY:

Fresh root yield

DMY:

Dry matter yield

References

  • Ali M, Copeland LO, Elias SG, Kelly JD (1995) Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor Appl Genet 91:118–121

    Article  CAS  PubMed  Google Scholar 

  • Becerra Lopez-Lavalle LA (2015) Revisiting cassava genetic diversity reveals eco-geographic signature of the crop’s domestication. Plant and Animal Genome XXIII, San Diego

    Google Scholar 

  • Bernardo R (2014) Essentials of plant breeding. Stemma Press Woodbury, Minnesota

    Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, Gonzalez de León D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Cach NT, Pérez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96(5):586–592

    Article  CAS  PubMed  Google Scholar 

  • Cach TN, Lenis JI, Pérez JC, Morante N, Calle F, Ceballos H (2006) Inheritance of relevant traits in cassava (Manihot esculenta Crantz) for sub-humid conditions. Plant Breed 125(2):177–182

    Article  Google Scholar 

  • Calle F, Pérez JC, Gaitán W, Morante N, Ceballos H, Llano G, Álvarez E (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144(1–2):177–186

    Article  Google Scholar 

  • Ceballos H, Hershey C, Becerra-López-Lavalle LA (2012) New approaches to cassava breeding. Plant Breed Rev 36:427–504

    Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 9:1647–1667

    Article  Google Scholar 

  • Cheng S-H, Cao L-Y, Yang S-H, Zhai H-Q (2004) Forty Years’ development of hybrid rice: China’s experience. Rice Sci 11(5–6):225–230

    Google Scholar 

  • Cheres MT, Miller JF, Crane JM, Knapp SJ (2000) Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100:889–894

    Article  Google Scholar 

  • Cress CE (1966) Heterosis of the hybrid related to gene frequency differences between populations. Genetics 53:269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Gardner CO, Mumm RF (1987) Heterosis among populations of maize (Zea mays L.) with different levels of exotic germplasm. Theor Appl Genet 73:445–450

    Article  CAS  PubMed  Google Scholar 

  • Crow JF (2000) The rise and fall of overdominance. Plant Breed Rev 17:225–257

    Google Scholar 

  • de Oliveira EJ, de Resende MDV, da Silva Santos V, Ferreira CF, Oliveira GAF, da Silva MS, de Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • Diers BW, McVetty PBE, Osborn TC (1996) Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci 36:79–83

    Article  Google Scholar 

  • Doyle J, Doyle J (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Fu D, Xiao M, Hayward A, Fu Y, Liu G, Jiang G, Zhang H (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Article  Google Scholar 

  • Ghaderi A, Adams MW, Nassib AM (1984) Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean. Crop Sci 24:37–42

    Article  Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Google Scholar 

  • Hallauer AR, Miranda JB (1981) Fo. 1988. Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Iowa

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12(9):427–432

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, Arias B, Bellotti AC (2005) Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Sci 45:1058–1063

    Article  Google Scholar 

  • Jennings DL, Hershey C (1985) Cassava breeding: a decade of progress from international programmes. In: Russel GE (ed) Progress in plant breeding. Butterworths Press, London, pp 89–116

    Chapter  Google Scholar 

  • Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 149–166

    Chapter  Google Scholar 

  • Kang MS (2002) Quantitative genetics, genomics, and plant breeding. CABI Publishing, Wallingford

    Google Scholar 

  • Kawano K, Narintaraporn K, Narintaraporn P, Sarakarn S, Limsila A, Limsila J, Suparhan D, Sarawat V, Watananonta W (1998) Yield improvement in a multistage breeding program for cassava. Crop Sci 38:325–332

    Article  Google Scholar 

  • Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim D-J (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684. doi:10.1007/s11032-009-9264-0

    Article  CAS  Google Scholar 

  • Lamkey KR, Schnicker BJ, Melchinger AE (1995) Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci 35:1272–1281

    Article  Google Scholar 

  • Lanza LLB, de Souza CL Jr, Ottoboni LMM, Vieira MLC, de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) Genetic and exploitation of heterosis in crops. American Society of Agronomy, Inc., Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. Crop Science Society of America, Madison, pp 29–56

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Microsoft Corporation (2004) www.microsoft.com

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson SL (2000) Office 2000. Manual de referencia. McGraw-Hill/Interamericana de España, Madrid

    Google Scholar 

  • Norton R (2014) Global starch market outlook and feedstock economics. In: Cassava World, Africa 2014. Centre for Management Technology (CMT), Lusaka, Zambia, 20-20 March

  • Parentoni SN, Magalhães JV, Pacheco CAP, Santos MX, Abadie T, Gama EEG, Guimarães PEO, Merielles WF, Lopes MA, Vasconcelos MJV, Paiva E (2001) Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica 121:197–208

    Article  CAS  Google Scholar 

  • Peña-Venegas CP, Stomph TJ, Verschoor G, Becerra Lopez-Lavalle LA, Struik PC (2014) Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6:792–826

    Article  Google Scholar 

  • Pérez-Velásquez JC, Ceballos H, Pandey S, Díaz-Amaris C (1995) Analysis of diallel crosses among Colombian landraces and improved populations of maize. Crop Sci 35:572–578

    Article  Google Scholar 

  • Pérez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Álvarez E (2005a) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77–85

    Article  Google Scholar 

  • Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, Arias B, Bellotti AC (2005b) Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci 45:1491–1496

    Article  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131:37–45

    Article  CAS  Google Scholar 

  • Saxena KB, Sawargaokar SL (2014) First information on heterotic groups in pigeonpea [Cajanus cajan (L.) Millsp.]. Euphytica 200:187–196

    Article  Google Scholar 

  • Spielman DJ, Kolady DE, Ward PS (2013) The prospects for hybrid rice in India. Food Secur 5:651–665

    Article  Google Scholar 

  • Stapleton G (2012) Global starch market outlook and competing starch raw materials for starches by product segment and region. In: Cassava Starch World 2012. Centre for Management Technology (CMT). Phnom Penh, Cambodia, 22–24 February

  • Wang C, Lentini Z, Tabares E, Quintero M, Ceballos H, Dedicova B, Sautter C, Olaya C, Peng Z (2011) Microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz). Biol Plant 55(3):469–478

    Article  Google Scholar 

  • Wolf DP, Hallauer AR (1997) Triple testcross analysis to detect epistasis in maize. Crop Sci 37:763–770

    Article  Google Scholar 

  • Xiao J, Li J, Yuan L, McCouch SR, Tanksley SD (1996) Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR based markers. Theor Appl Genet 92:637–643

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-S, Yang J-G, Yang R-H, Xu N-S, Liu X-Y, Du G (2006) Study of the relationship between genetic distance and heterosis in castor. Sci Agric Sin 3:029

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ceballos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballos, H., Becerra López-Lavalle, L.A., Calle, F. et al. Genetic distance and specific combining ability in cassava. Euphytica 210, 79–92 (2016). https://doi.org/10.1007/s10681-016-1701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1701-7

Keywords

Navigation