Skip to main content
Log in

Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The present study aimed to dissect the genetic basis of heterosis for grain yield and its components in maize (Zea mays L.). Quantitative trait loci (QTL) and heterotic loci (HL) were analyzed using a set of 203 single segment substitution lines (SSSLs) and its testcross population in three environments. Forty-one QTL were identified as responsible for grain yield, ear length, ear diameter, row number, kernel number per row, and 100-kernel weight in the SSSLs population, and 17 QTL were conserved across the three environments. In the heterosis analysis, 36 HL were identified for grain yield and five yield-related traits in the test population in the three environments. Among the HL, only six (16.7 %) for ear length, kernel number per row, 100-kernel weight, and grain yield were consistent with the results of QTL mapping. In addition, 16.7 % of the heterotic loci showed a dominant effect and 83.3 % showed an over-dominant effect. The results implied that dominance and over-dominance were two important components of heterosis in maize grain yield and yield-related traits in the present testcross population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheema KK, Bains NS, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008) Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    Article  CAS  Google Scholar 

  • Duvick DN (1995) What is heterosis? Poster presented to Annual Res. Meeting of Pioneer Hi-Bred Scientific Staff, Cancun, Mexico

  • Duvick DN (1997) What is yield? Developing drought- and low N-tolerant maize. In: Proceedings of a symposium, El Batan, Mex. (Mexico), pp 25–29

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Gu RL, Chen FJ, Liu BR, Wang X, Liu JC, Li PC, Pan QC, Pace J, Soomro AA, Lübberstedt T et al (2015) Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet 128:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Guo YP, Ma J, Wang F, Sun MZ, Gui LJ, Zhou JJ, Song XL, Sun XZ, Zhang TZ (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55(8):759–774

    Article  CAS  PubMed  Google Scholar 

  • Guo TT, Yang N, Tong H, Pan QC, Yang XH, Tang JH, Wang JK, Li JS, Yan JB (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158

    Article  PubMed  Google Scholar 

  • Hua JP, Xing YZ, Wei WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YL, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH (2008) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351

    Article  Google Scholar 

  • Lima MLA Jr, Souza CL Jr, Bento DAV, Souza AP, Garcia LAC (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liu GF, Zhu HT, Zhang GQ, Li LH, Ye GY (2012) Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet 125:143–153

    Article  PubMed  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107:494–502

    Article  CAS  PubMed  Google Scholar 

  • Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20:41–51

    Article  Google Scholar 

  • Ma LY, Bao JS, Guo LB, Zeng DL, Li XM, Ji ZJ, Xia YW, Yang CD, Qian Q (2009) Quantitative trait loci for panicle layer uniformity identified in doubled haploid lines of rice in two environments. J Integr Plant Biol 51:818–824

    Article  CAS  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: qTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Milena AL, Dyeme AV, Anete PS (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Pan JJ (1994) Crop breeding. China Agriculture Press, Beijing, pp 6–95

    Google Scholar 

  • Phadnis N, Orr HA (2009) A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323:376–378

    Article  CAS  PubMed  Google Scholar 

  • Powers L (1944) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275

    Article  Google Scholar 

  • Qi HH, Huang J, Zheng Q, Huang YQ, Shao RX, Zhu LY, Zhang ZX, Qiu FZ, Zhou GC, Zheng YL, Yue B (2013) Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet 126:369–377

    Article  PubMed  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genom 8:79–86

    Article  Google Scholar 

  • Shen GJ, Zhan W, Chen HX, Xing YZ (2014) Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci 215–216:11–18

    Article  PubMed  Google Scholar 

  • Shi JQ, Li RY, Zou J, Long Y, Meng JL (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS ONE 6(7):e21645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc 4:296–301

    Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Song FW, Peng HR, Liu T, Zhang YR, Sun QX, Ni ZF (2011) Heterosis for plant height and ear position in maize revealed by quantitative trait loci analysis with triple testcross design. Acta Agron Sin 37(7):1186–1195

    Article  CAS  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • SPSS Inc (1993) IBM SPSS Statistics base 17.0 user’s guide. IBM Corporation, New York

    Google Scholar 

  • Stuber CW, Lincoln SW, Wolff DW, Heientjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang JH, Yan JB, Ma XQ, Teng WT, Wu WR, Dai JR, Dhillon BS, Melchinger AE, Li JS (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    Article  PubMed  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • Wei XY, Wang B, Peng Q, Wei F, Mao KJ, Zhang XG, Sun P, Liu ZH, Tang JH (2015) Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed 35:94

    Article  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49:476–484

    Article  CAS  PubMed  Google Scholar 

  • Xiao JH, Li JM, Yuan LP, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie HL, Ding D, Cui ZT, Wu X, Hu YM, Liu ZH, Li YL, Tang JH (2010) Genetic analysis of the related traits of flowering and silk for hybrid seed production in maize. Genes Genom 32:53–59

    Article  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TF, Li B, Zhang DF, Jia GQ, Li ZY, Wang SC (2012) Genome-wide transcriptional analysis of yield and heterosis-associated genes in maize (Zea mays L.). J Integr Agric 11(8):1245–1256

    Article  CAS  Google Scholar 

  • Zhang GD, Wang XP, Wang B, Tian YC, Li M, Nie YX, Peng QC, Wang ZL (2013) Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor Appl Genet 126:1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Zhuang JY, Fan YY, Wu JL, Xia YW, Zheng KL (2001) Importance of over-dominance as the genetic basis of heterosis in rice. Sci China Ser C 44(3):327–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Basic Research and Development Plan of China (2014CB138203) and the National Natural Science Foundation of China (31271732).

Author contributions

JT designed and supervised the study. XW, XL, MX, KM, WL, FW and PS performed the experiments, and XW, ZZ, KM and MX analyzed the data. XW, XL and ZZ prepared the manuscript. All the authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Xiaoyi Wei and Xiaomin Lu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Lu, X., Zhang, Z. et al. Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica 210, 181–193 (2016). https://doi.org/10.1007/s10681-016-1695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1695-1

Keywords

Navigation