Skip to main content
Log in

Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Heterosis has been exploited to increase grain yield, quality, and resistance in many crops, and it plays an important role in plant breeding. However, the genetic mechanism of heterosis remains unclear. To dissect the genetic basis of heterosis, a set of 203 single segment substitution lines (SSSLs) was developed, and its test-cross population was used to identify heterotic loci (HL) for plant morphological traits in maize, including plant height (PH), ear height (EH), leaf number (LN), tassel main axis length (TMAL), and tassel branch number (TBN). A total of 41 QTLs and 37 HL were identified for five morphological traits in the test-cross population derived from the 203 SSSLs and the parent, Xu178. Nine HL for PH, nine HL for EH, seven HL for LN, seven HL for TMAL, and five HL for TBN were detected in three different environments, respectively. Eight HL, ph1a, ph1b, ph2, ph5, eh3a, eh3b, eh10, and tmal1b, were simultaneously detected in the three environments. Among the 37 HL, only 10 (27.03 %; for PH, EH, LN, and TBN) had a corresponding QTL (24.39 %) sharing the same chromosomal region. Of all the HL, 21.4 % showed dominance effects, 76.8 % showed over-dominance effects, and only one (1.8 %) showed a partial-dominance effect. This result illustrated that heterosis and performance was controlled by different genetic mechanisms, and over-dominance effects were the main contributors to heterosis for plant-related traits at the single-locus level in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83(2):141–145

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis. Plant Cell 22:2105–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  PubMed  Google Scholar 

  • Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143:1437–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • East EM (1936) Heterosis. Genetics 21:375–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia AA, Wang SC, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo JF, Su GQ, Zhang JP, Wang GY (2008) Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol 7(12):1829–1838

    CAS  Google Scholar 

  • Guo X, Guo YP, Ma J, Wang F, Sun MZ, Gui LJ, Zhou JJ, Song XL, Sun XZ, Zhang TZ (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55(8):759–774

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou ZL, Löffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua JP, Xing YZ, Wei WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS 100:2574–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koester R, Sisco PH, Stuber CW (1993) Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci 33(6):1209–1216

    Article  Google Scholar 

  • Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer RC, Altmann T, Melchinger AE (2007) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175:2009–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158(4):1737–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li LZ, Lu KY, Chen ZM, Mu TM, Hu ZL, Li XQ (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–1742

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZK, Xie QG, Zhu ZL, Liu JL, Han SX, Tian B, Yuan QQ, Tian JC (2010) Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin 36:771–778

    CAS  Google Scholar 

  • Lippman Z, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liu GF, Zhu HT, Zhang GQ, Li LH, Ye GY (2012) Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet 125:143–153

    Article  PubMed  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107:494–502

    Article  CAS  PubMed  Google Scholar 

  • Lu MY, Li XH, Shang AL, Wang YM, Xi ZY (2011) Characterization of a set of chromosome single-segment substitution lines derived from two sequenced elite maize inbred lines. Maydica 56(4):399–407

    Google Scholar 

  • Luo XJ, Fu YC, Zhang PJ, Wu S, Tian F, Liu JY, Zhu ZF, Yang JS, Sun CQ (2009) Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. J Integr Plant Biol 51:393–408

    Article  PubMed  Google Scholar 

  • Ma LY, Bao JS, Guo LB, Zeng DL, Li XM, Ji ZJ, Xia YW, Yang CD, Qian Q (2009) Quantitative trait loci for panicle layer uniformity identified in doubled haploid lines of rice in two environments. J Integr Plant Biol 51:818–824

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149(1):383–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melchinger AE, Utz HF, Piepho H-P, Zeng ZB, Schon CC (2007) The role of epistasis in the manifestation of heterosis: a systems oriented approach. Genetics 177:1815–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (2008) Genetic expectations of quantitative trait loci main and interaction effects obtained with the triple testcross design and their relevance for the analysis of heterosis. Genetics 178:2265–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JJ (1994) Crop breeding. China Agriculture Press, Beijing, pp 6–95

    Google Scholar 

  • Powers L (1944) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275

    Article  Google Scholar 

  • Qi HH, Huang J, Zheng Q, Huang YQ, Shao RX, Zhu LY, Zhang ZX, Qiu FZ, Zhou GC, Zheng YL, Yue B (2013) Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet 126:369–377

    Article  PubMed  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–78

    Article  CAS  PubMed  Google Scholar 

  • Shen GJ, Zhan W, Chen HX, Xing YZ (2014) Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci 215–216:11–18

    Article  PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. J Hered 1:296–301

    Article  Google Scholar 

  • Song FW, Peng HR, Liu T, Zhang YR, Sun QX, Ni ZF (2011) Heterosis for plant height and ear position in maize revealed by quantitative trait loci analysis with triple testcross design. Acta Agron Sin 37(7):1186–1195

    Article  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Chen ZJ (2005) Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity 94:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang JH, Ma XQ, Teng WT, Yan JB, Wu WR, Dai JR, Li JS (2006) Detection of quantitative trait loci and heterosis for plant height in maize in “immortalized F2” (IF2) population. Chin Sci Bull 51(24):2864–2869

    Google Scholar 

  • Tang JH, Yan JB, Ma XQ, Teng WT, Wu WR, Dai JR, Dhillon BS, Melchinger AE, Li JS (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    Article  PubMed  Google Scholar 

  • Wang ZQ, Yu CY, Liu X, Liu SJ, Yin CB, Liu LL, Lei JG, Jiang L, Yang C, Chen LM, Zhai HQ, Wan JM (2012) Identification of indica rice chromosome segments for the improvement of japonica inbreds and hybrids. Theor Appl Genet 124(7):1351–1364

    Article  CAS  PubMed  Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature 184:527–530

    Article  CAS  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang QF (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Chen Y, Yao W, Zhang CJ, Xie WB, Hua JP, Xing YZ, Xiao JH, Zhang QF (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109(39):15847–15852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang JY, Fan YY, Wu JL, Xia YW, Zheng KL (2001) Importance of over-dominance as the genetic basis of heterosis in rice. Sci China Ser C 44(3):327–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Basic Research and Development Plan of China (2014CB138203) and the National Natural Science Foundation of China (31271732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Tang.

Additional information

Xiaoyi Wei and Bin Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Wang, B., Peng, Q. et al. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breeding 35, 94 (2015). https://doi.org/10.1007/s11032-015-0287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0287-4

Keywords

Navigation