Skip to main content

Advertisement

Log in

QTL mapping of seedling root traits associated with nitrogen and water use efficiency in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The dramatically increased use of nitrogen fertilizers and global warming raise concerns about environmental pollutions, crop production and future food security. The urgent need for new crops with higher nitrogen and water use efficiency in agricultural practices has been recognized. Root architecture is crucial for acquisition of water and nutrients from the soil; and the selection for specific root traits might be advantageous. In this study seedlings of seven maize inbred lines from a Southern-European breeding genepool were analysed for root morphological characteristics and response to nitrate. As all the lines revealed a similar adaptive reaction to altered nitrate concentrations, we focused our efforts on analysis of two lines, NUEC2 and NUEC4, with the most contrasting differences in constitutive root traits. Investigation of early plant growth under greenhouse conditions revealed inter-genotype differences in NUE and response to drought that might be associated with divergent root architecture of the two lines. We performed a quantitative trait locus mapping of seedling root traits in the populations of 60 double haploid lines derived from the cross NUEC2 × NUEC4. Thirty QTL were detected for seven root traits. Some of the QTL were clustered together, and, in total, 8 loci in the maize genome were found to influence multiple root traits. Interestingly, the positions of QTL for root traits located on chromosomes 3 and 8 overlap with the QTL for grain yield identified in the same population. Further research is needed to validate the QTL and examine their possible causal relationships with corn yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghani AH, Kumar B, Reyes-Matamoros J, Gonzalez-Portilla PJ, Jansen C, San Martin JP, Lee M, Lubberstedt T (2013) Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica 189:123–133. doi:10.1007/S10681-012-0759-0

    Article  CAS  Google Scholar 

  • Banziger M, Edmeades GO, Lafitte HR (1999) Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci 39:1035–1040

    Article  Google Scholar 

  • Bertin P, Gallais A (2000) Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines I. Agrophysiological results. Maydica 45:53–66

    Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. doi:10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential - are they compatible, dissonant, or mutually exclusive? Aust J Agr Res 56:1159–1168. doi:10.1071/Ar05069

    Article  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR, Hanlon MT, Kaeppler SM, Brown KM, Lynch JP (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127:2293–2311. doi:10.1007/s00122-014-2353-4

    Article  PubMed  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM, Hanlon MT, Kaeppler SM, Lynch JP, Brown KM (2015) QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128:93–106. doi:10.1007/s00122-014-2414-8

    Article  PubMed  Google Scholar 

  • Campos H, Cooper M, Edmeades GO, Loffler C, Schussler JR, Ibanez M (2006) Changes in drought tolerance in maize associated with 50 years of breeding for yield in the US corn belt. Maydica 51:369–381

    Google Scholar 

  • Chardon F, Noel V, Masclaux-Daubresse C (2012) Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63:3401–3412. doi:10.1093/jxb/err353

    Article  CAS  PubMed  Google Scholar 

  • Chun L, Mi GH, Li JS, Chen FJ, Zhang FS (2005) Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 276:369–382. doi:10.1007/S11104-005-5876-2

    Article  CAS  Google Scholar 

  • Comas LH, Becker SR, Cruz VV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442. doi:10.3389/Fpls.2013.00442

    Article  PubMed  PubMed Central  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–1220. doi:10.1007/s00122-006-0222-5

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014) Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci 226:108–119. doi:10.1016/j.plantsci.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334. doi:10.1371/journal.pone.0028334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605. doi:10.1016/j.tplants.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Gorska A, Zwieniecka A, Holbrook NM, Zwieniecki MA (2008) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998. doi:10.1007/s00425-008-0798-x

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez RA (2012) Systems biology for enhanced plant nitrogen nutrition. Science 336:1673–1675. doi:10.1126/science.1217620

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629. doi:10.1007/s00122-004-1665-1

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325. doi:10.1007/S11104-008-9843-6

    Article  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789. doi:10.1093/bioinformatics/btn523

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lubberstedt T (2014) Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci 224:9–19. doi:10.1016/j.plantsci.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  • Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Bellotti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326. doi:10.1093/jxb/erl161

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305:253–265

    Article  CAS  Google Scholar 

  • Liu J, Chen F, Olokhnuud C, Glass ADM, Tong Y, Zhang F, Mi G (2009) Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. J Plant Nutr Soil Sci 172:230–236

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi:10.1093/aob/mcs293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotech J 10:1011–1025. doi:10.1111/j.1467-7652.2012.00700.x

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi G, Chen F, Zhang F (2007) Physiological and genetic mechanisms for nitrogen-use efficiency in maize. J Crop Sci Biotech 10:57–63

    Google Scholar 

  • Mi G, Chen F, Wu Q, Lai N, Yuan L, Zhang F (2010) Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci 53:1369–1373. doi:10.1007/s11427-010-4097-y

    Article  PubMed  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 363:639–658. doi:10.1098/Rstb.2007.2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler J, Liu S, Wen TJ, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H, Bruce W, Schnable PS, Hochholdinger F (2014) Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J 79:729–740. doi:10.1111/tpj.12578

    Article  CAS  PubMed  Google Scholar 

  • Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lubberstedt T (2014) Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (automatic root image analysis). PLoS One 9:e108255. doi:10.1371/journal.pone.0108255

    Article  PubMed  PubMed Central  Google Scholar 

  • Pace J, Gardner C, Romay C, Ganapathsybrumanian B, Lubberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom 16:47. doi:10.1186/s12864-015-1226-9

    Article  CAS  Google Scholar 

  • Presterl T, Seitz G, Landbeck M, Thiemt EM, Schmidt W, Geiger HH (2003) Improving nitrogen-use efficiency in European maize. Crop Sci 43:1259–1265

    Article  Google Scholar 

  • Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang CJ (2007) Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed 20:15–29

    Article  CAS  Google Scholar 

  • Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A (2010) QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet 120:621–631. doi:10.1007/s00122-009-1180-5

    Article  CAS  PubMed  Google Scholar 

  • Saengwilai P, Tian X, Lynch J (2014) Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.). Plant Physiol 166:581–589. doi:10.1104/pp.113.232603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659. doi:10.1111/j.1365-313X.2007.03075.x

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424. doi:10.1007/s00122-009-1144-9

    Article  CAS  PubMed  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. doi:10.1007/S11104-010-0623-8

    Article  CAS  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch J (2013) Maize root growth angles become steeper under low N conditions. Field Crop Res 140:18–31

    Article  Google Scholar 

  • Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Zalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643

    Article  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002a) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002b) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani MM, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    Article  CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. doi:10.1038/ng.2725

    Article  CAS  PubMed  Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270. doi:10.1007/s00122-005-0043-y

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38. doi:10.1038/hdy.2013.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mi G, Chen F, Zhang JH, Zhang FS (2004) Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J Plant Nutr 27:2189–2202

    Article  CAS  Google Scholar 

  • Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SV, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi:10.1093/Jxb/Ers111

    Article  CAS  PubMed  Google Scholar 

  • Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643. doi:10.1104/pp.105.062174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woll K, Borsuk LA, Stransky H, Nettleton D, Schnable PS, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139:1255–1267. doi:10.1104/pp.105.067330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu P, White PJ, Hochholdinger F, Li C (2014) Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240:667–678. doi:10.1007/s00425-014-2150-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang XB, Tang B, Yu F, Li L, Wang M, Xue YD, Zhang ZX, Yan JB, Yue B, Zheng YL, Qiu FZ (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31:594–606. doi:10.1007/S11105-012-0526-3

    Article  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695. doi:10.1007/s00122-005-2051-3

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10. doi:10.1007/s00122-006-0260-z

    Article  CAS  PubMed  Google Scholar 

  • Zurek PR, Topp CN, Benfey P (2015) Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture. Plant Physiol 167:1487–1496. doi:10.1104/pp.114.251751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the European Community financial participation under the Seventh Framework Programme for Research, Technological Development and Demonstration Activities, for the Integrated Project NUE-CROPS FP7-CPIP222645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pestsova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestsova, E., Lichtblau, D., Wever, C. et al. QTL mapping of seedling root traits associated with nitrogen and water use efficiency in maize. Euphytica 209, 585–602 (2016). https://doi.org/10.1007/s10681-015-1625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1625-7

Keywords

Navigation