Skip to main content

Advertisement

Log in

Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AR:

Axial root

BR:

Brace root

CR:

Crown root

LR:

Lateral root

N:

Nitrogen

TRL:

Total root length

References

  • Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, Dupuy LX (2014) A scanner system for high resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. J Exp Bot. doi:10.1093/jxb/eru048

    PubMed  PubMed Central  Google Scholar 

  • Ågren GI, Ingestad T (1987) Root: shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10:579–586

    Google Scholar 

  • Aikio S, Markkola AM (2002) Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities. Funct Ecol 16:67–76

    Google Scholar 

  • Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191

    PubMed  CAS  Google Scholar 

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    CAS  Google Scholar 

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    PubMed  CAS  Google Scholar 

  • Baluška F, Barlow PW, Baskin TI, Chen R, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK, Murphy A, Šamaj J, Volkmann D (2005) What is apical and what is basal in plant root development? Trends Plant Sci 10:409–411

    PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 3rd edn. Wiley, New York

    Google Scholar 

  • Bell JK, McCully ME (1970) A histological study of lateral root initiation and development in Zea mays. Protoplasma 70:179–205

    Google Scholar 

  • Benková E, Bielach A (2010) Lateral root organogenesis-from cell to organ. Curr Opin Plant Biol 13:677–683

    PubMed  Google Scholar 

  • Böhm W (1979) Methods of Studying Root Systems. Springer/Berlin/Heidelberg, New York

    Google Scholar 

  • Brown KF, Biscoe PV (1985) Fibrous root growth and water use of sugar beet. J Agric Sci 105:679–691

    Google Scholar 

  • Buczko U, Kuchenbuch RO (2013) Spatial distribution assessment of maize roots by 3D monolith sampling. Communi Soil Sci Plan 44:2127–2151

    CAS  Google Scholar 

  • Casero PJ, Casimiro I, Lloret PG (1995) Lateral root initiation by asymmetrical transverse divisions of pericycle cells in four plant species: Raphanus sativus, Helianthus annuus, Zea mays, and Daucus carota. Protoplasma 188:49–58

    Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    PubMed  CAS  Google Scholar 

  • Ceppi D, Sala M, Gentinetta E, Verderio A, Motto M (1987) Genotype-dependent leaf senescence in maize: inheritance and effects of pollination-prevention. Plant Physiol 85:720–725

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen LE, Below FE, Hageman RH (1981) The effects of ear removal on senescence and metabolism of maize. Plant Physiol 68:1180–1185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ciampitti IA, Camberato JJ, Murrell ST, Vyn TJ (2013) Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. macronutrients. Agron J 105:783–795

    CAS  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, Mccouch SR, Aneshansley DJ, Kochian LV (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36:454–466

    PubMed  CAS  Google Scholar 

  • Clarkson DT, Earnshaw MJ, White PJ, Cooper HD (1988) Temperature dependent factors influencing nutrient uptake: an analysis of responses at different levels of organization. Symp Soc Exp Biol 42:281–309

    PubMed  CAS  Google Scholar 

  • Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and post silking N-uptake in a set of maize recombinant inbred lines. 3 QTL detection and coincidences. Theor Appl Genet 117:729–747

    PubMed  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Google Scholar 

  • Croft SA, Hodge A, Pitchford JW (2012) Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks. Plant Soil 351:191–206

    CAS  Google Scholar 

  • de Groot CC, Marcelis LF, van den Boogaard R, Kaiser WM, Lambers H (2003) Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248:257–268

    Google Scholar 

  • De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193:867–873

    PubMed  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    PubMed  CAS  Google Scholar 

  • Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX (2012) Transparent soil for imaging the rhizosphere. PLoS One 7:e44276

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system and the shoot in barley. New Phytol 75:479–490

    CAS  Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley: II Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J Exp Bot 26:79–90

    CAS  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 83:1189–1202

    Google Scholar 

  • Dunbabin VM, Diggle AJ, Rengel Z (2002) Simulation of field data by a basic three-dimensional model of interactive root growth. Plant Soil 239:39–54

    CAS  Google Scholar 

  • Dunbabin VM, Diggle AJ, Rengel Z (2003) Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ 26:835–844

    PubMed  Google Scholar 

  • Dunbabin VM, Rengel Z, Diggle AJ (2004) Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Funct Ecol 18:204–211

    Google Scholar 

  • Durieux RP, Kamprath EJ, Jackson WA, Moll RH (1994) Root distribution of corn: the effect of nitrogen fertilization. Agron J 86:958–962

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays). Adv Agron 86:83–145

    Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630

    Google Scholar 

  • Echarte L, Rothstein S, Tollenaar M (2008) The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci 48:656–665

    CAS  Google Scholar 

  • Eghball B, Maranville JW (1993) Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agron J 85:147–152

    CAS  Google Scholar 

  • Eissenstat DM (1997) Trade-offs in root form and function. In: Jackson LE (ed) Ecology in agriculture. Academic Press, San Diego, pp 173–199

    Google Scholar 

  • Eissenstat DM, Yanai R (1997) The ecology of root life-span. Adv Ecol Res 27:1–60

    Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    CAS  Google Scholar 

  • Esau K (1977) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Evenson RE, Gollen D (2003) Assessing the impact of the Green Revolution, 1960–2000. Science 300:758–762

    PubMed  CAS  Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Feil B, Thiraporn R, Geisler G, Stamp P (1990) Root traits of maize seedlings-indicators of nitrogen efficiency? Plant Soil 123:155–159

    CAS  Google Scholar 

  • Feix G, Hochholdinger F, Park WJ (2002) Maize root system and genetic analysis of its formation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half, 4th edn. Marcel Dekker, New York, pp 239–248

    Google Scholar 

  • Feldman L (1994) The maize root. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 29–37

    Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:85–98

    Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, San Diego, pp 305–323

    Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. CRC Press, Boca Raton, pp 15–32

    Google Scholar 

  • Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    CAS  Google Scholar 

  • Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32:682–693

    PubMed  CAS  Google Scholar 

  • Foth HD (1962) Root and top growth of corn. Agron J 54:49–52

    Google Scholar 

  • Gallais A, Coque M (2005) Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica 50:531–547

    Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    PubMed  CAS  Google Scholar 

  • Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser BN (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytol 198:82–94

    PubMed  CAS  Google Scholar 

  • Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    PubMed  CAS  Google Scholar 

  • Gaudin ACM, Mcclymont SA, Holmes BM, Lyons E, Raizada MN (2011) Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ 34:2122–2137

    PubMed  CAS  Google Scholar 

  • Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 10:44–50

    Google Scholar 

  • Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11:773–782

    Google Scholar 

  • Gewin V (2010) An underground revolution. Nature 466:552–553

    CAS  Google Scholar 

  • Giehl RF, Gruber BD, von Wirén N (2013) It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot. doi:10.1093/jxb/ert421

    PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    PubMed  CAS  Google Scholar 

  • Gojon A (2013) Inorganic nitrogen acquisition and signaling: physiological and molecular aspects. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half, 4th edn. CRC Press, Boca Raton, pp 25:15–32

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    PubMed  CAS  Google Scholar 

  • Granato TC, Raper CD (1989) Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot 40:263–275

    PubMed  CAS  Google Scholar 

  • Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Oxford

    Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 109:161–179

    Google Scholar 

  • Guo Y, Chen F, Zhang F, Mi G (2005) Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Sci 169:894–900

    CAS  Google Scholar 

  • Hammer GL, Dong ZS, McLean G, Doherty A, Messina C (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Google Scholar 

  • Hanway JJ (1963) Growth stages of corn (Zea mays, L.). Agron J 55:487–492

    Google Scholar 

  • Hardtke CS (2006) Root development-branching into novel spheres. Curr Opin Plant Biol 9:66–71

    PubMed  CAS  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager M, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 178–189

    Google Scholar 

  • Herder GD, Isterdael GV, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    PubMed  CAS  Google Scholar 

  • Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

    CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    PubMed  CAS  Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    PubMed  CAS  Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    PubMed  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    PubMed  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31:1517–1530

    CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Hoppe DC, McCully ME, Wenzel CL (1986) The nodal roots of Zea: their development in relation to structural features of the stem. Can J Bot 64:2524–2537

    Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    PubMed  CAS  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009a) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    CAS  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009b) Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant Soil 325:335–349

    CAS  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    CAS  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson RB, Manwarning JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–59

    PubMed  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Google Scholar 

  • Jansen L, Roberts I, De Rycke R, Beeckman T (2012) Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize. Phil Trans R Soc B 367:1525–1533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jeschke WD, Holobrada M, Hartung W (1997) Growth of Zea mays L. plants with their seminal roots only. Effects on plant development, xylem transport, mineral nutrition and the flow and distribution of abscisic acid (ABA) as a possible shoot to root signal. J Exp Bot 48:1229–1239

    CAS  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci Soc Am J 68:529–537

    CAS  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    PubMed  CAS  Google Scholar 

  • Kuchenbuch RO, Gerke HH, Buczko U (2009) Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant Soil 315:297–314

    CAS  Google Scholar 

  • Li H, Ma Q, Li H, Zhang F, Rengel Z, Shen J (2014) Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376:151–163

    CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    PubMed  CAS  Google Scholar 

  • Liu J, Han L, Chen F, Bao J, Zhang F, Mi G (2008) Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Sci 175:272–282

    CAS  Google Scholar 

  • Liu J, An X, Cheng L, Chen F, Bao J, Yuan L, Zhang F, Mi G (2010) Auxin transport in maize roots in response to localized nitrate supply. Ann Bot 106:1019–1026

    PubMed  CAS  PubMed Central  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch JP (1998) The role of nutrient efficient crops in modern agriculture. J Crop Prod 1:241–264

    Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:1–20

    Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    CAS  Google Scholar 

  • Lynch JP, Marschner P, Rengel Z (2012) Effect internal and external factors on root growth and development. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 331–346

    Google Scholar 

  • Ma BL, Dwyer LM (1998) Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant Soil 199:283–291

    CAS  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    PubMed  CAS  Google Scholar 

  • Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S (2014) No homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65:185–200

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCully ME (1995) How do real roots work? Plant Physiol 109:1–6

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:697–718

    Google Scholar 

  • McCully ME, Canny MJ (1988) Pathways and processes of water and nutrient movements in roots. Plant Soil 111:159–170

    CAS  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    PubMed  CAS  Google Scholar 

  • Mounier E, Pervent M, Ljung K, Gojon A, Nacry P (2014) Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ 37:162–174

    PubMed  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation. Plant Soil 370:1–29

    CAS  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    PubMed  CAS  Google Scholar 

  • Ning P, Liao C, Li S, Yu P, Zhang Y, Li X, Li C (2012) Maize cob plus husks mimics the grain sink to simulate nutrient uptake by roots. Field Crops Res 130:38–45

    Google Scholar 

  • Ning P, Li S, Yu P, Zhang Y, Li C (2013) Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res 144:19–27

    Google Scholar 

  • Ning P, Li S, Li XX, Li CJ (2014) New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Res. doi:10.1016/j.fcr.2014.06.009

    Google Scholar 

  • Niu J, Peng Y, Li C, Zhang F (2010) Changes in root length at the reproductive stage of maize plants grown in the field and quartz sand. J Plant Nutr Soil Sci 173:306–314

    CAS  Google Scholar 

  • Ogawa A, Kawashima C, Yamauchi A (2005) Sugar accumulation along the seminar root axis as affected by osmotic stress in maize: a possible physiological basis for plastic lateral root development. Plant Prod Sci 8:173–180

    Google Scholar 

  • Oikeh SO, Kling JG, Horst WJ, Chude VO, Carsky RJ (1999) Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field Crops Res 62:1–13

    Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18:459–467

    PubMed  CAS  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    PubMed  CAS  Google Scholar 

  • Pan WL, Jackson WA, Moll RH (1985) Nitrate uptake and partitioning by corn (Zea mays L.) root systems and associated morphological differences among genotypes and stages of root development. J Exp Bot 36:1341–1351

    Google Scholar 

  • Passioura JB (1972) The effect of root geometry on the yield of wheat growing on stored water. Aust J Agric Res 23:745–752

    Google Scholar 

  • Peng Y, Li X, Li C (2012a) Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field. PLoS One 7:e37726. doi:10.1371/journal.pone.0037726

  • Peng Y, Zhang Y, Sun G, Ning P, Li X, Li C (2012b) Temporal and spatial dynamics in root length density of field-grown maize and NPK in the soil profile. Field Crops Res 131:9–16

  • Pérez-Torres CA, López-Bucioa J, Cruz-Ramírezb A, Ibarra-Lacletteb E, Dharmasiric S, Estellec M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed  PubMed Central  Google Scholar 

  • Postma J A, Dathe A, Lynch J (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 113.233916

  • Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high-affinity NO3 transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot 54:1023–1031

    PubMed  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    PubMed  CAS  Google Scholar 

  • Rajcan I, Tollenaar M (1999) Source: sink ratio and leaf senescence in maize: II Nitrogen metabolism during grain filling. Field Crops Res 60:255–265

    Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 4:1193–1208

    Google Scholar 

  • Robertson MJ, Fukai S, Hammer GL, Ludlow MM (1993) Modelling root growth of grain sorghum using the CERES approach. Field Crops Res 33:113–130

    Google Scholar 

  • Robinson D (1994) The responses of plants to nonuniform supplies of nutrients. New Phytol 127:635–674

    CAS  Google Scholar 

  • Robinson D, Rorison IH (1983) Relationship between root morphology and nitrogen availability in a recent theoretical model describing nitrogen uptake from soil. Plant Cell Environ 6:641–647

    CAS  Google Scholar 

  • Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot 112:331–345

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rubio G, Lynch JP (2007) Compensation among root classes in Phaseolus vulgaris L. Plant Soil 290:307–321

    CAS  Google Scholar 

  • Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146:2020–2035

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A (2010) QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet 120:621–631

    PubMed  CAS  Google Scholar 

  • Ruzicka DR, Barrios-Masias FH, Hausmann NT, Jackson LE, Schachtman DP (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 10:75

    PubMed  PubMed Central  Google Scholar 

  • Saengwilai P, Tian X, Lynch J (2014) Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.) Plant Physiol 113.232603

  • Santi S, Locci G, Monte R, Pinton R, Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54:1851–1864

    PubMed  CAS  Google Scholar 

  • Sattelmacher B, Thoms K (1995) Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a locally restricted nitrate supply. Zeitschrift für Pflanzenernährung und Bodenkunde 158:493–497

    CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    CAS  Google Scholar 

  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F (2013) Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 200:473–482

    PubMed  CAS  Google Scholar 

  • Schortemeyer M, Feil B, Stamp P (1993) Root morphology and nitrate uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann Bot 72:107–115

    CAS  Google Scholar 

  • Shane MW, McCully ME (1999) Root xylem embolisms: implications for water flow to the shoot in single-rooted maize plants. Aust J Plant Physiol 26:107–114

    Google Scholar 

  • Shane MW, McCully ME, Canny MJ (2000) Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann Bot 85:613–624

    Google Scholar 

  • Shemesh H, Arbiv A, Gersani M, Ovadia O, Novoplansky A (2010) The effects of nutrient dynamics on root patch choice. PLoS One 5:1–6

    Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    PubMed  CAS  Google Scholar 

  • Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112:381–389

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siddique KHM, Belford RK, Tennant D (1990) Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a mediterranean environment. Plant Soil 121:89–98

    Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Phil Trans R Soc B 367:1441–1452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Snapp SS, Shennan C (1992) Effects of salinity on root growth and death dynamics of tomato. Lycopersicon esculentum mill. New Phytol 121:71–79

    Google Scholar 

  • Sullivan WM, Jiang ZC, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci 40:765–772

    Google Scholar 

  • Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 230:185–195

    CAS  Google Scholar 

  • Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil 288:233–248

    CAS  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    PubMed  CAS  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2013) Maize root growth angles become steeper under low N conditions. Field Crops Res 140:18–31

    Google Scholar 

  • Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008) Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol 10:462–475

    PubMed  CAS  Google Scholar 

  • Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Caporale G, Ruperti B, Quaggiotti S (2011) Transcriptome analysis reveals coordinated spatiotemporal regulation of haemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol 192:338–352

    PubMed  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. In: Roots: the dynamic interface between plants and the earth. Springer Netherlands, pp 35–54

  • Ubeda-Tomás S, Beemster GTS, Bennett MJ (2012) Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci 17:326–331

    PubMed  Google Scholar 

  • Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Google Scholar 

  • van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Varney GT, McCully ME (1991) The branch roots of Zea. II Developmental loss of the apical meristem in field-grown roots. New Phytol 118:535–546

    Google Scholar 

  • Varney GT, Canny MJ, Wang XL, McCully ME (1991) The branch roots of Zea. First order branches, their number, sizes and division into classes. Ann Bot 67:357–364

    Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998

    PubMed  PubMed Central  Google Scholar 

  • Waisel Y, Eshel A (2002) Functional diversity of various constituents of a single root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: The Hidden Half, 3rd edn. CRC Press, Boca Raton, pp 243–268

    Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walk T, Jaramillo R, Lynch JP (2005) Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition. Plant Soil 279:347–366

    Google Scholar 

  • Wang Y, Mi G, Chen F, Zhang J, Zhang F (2004) Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J Plant Nutr 27:2189–2202

    CAS  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301

    CAS  Google Scholar 

  • Warncke DD, Barber SA (1974) Root development and nutrient uptake by corn grown in solution culture. Agron J 66:514–516

    CAS  Google Scholar 

  • Watt M, Kirkegaard JA, Passioura JP (2006a) Rhizosphere biology and crop productivity. Aust J Soil Res 44:299–317

    Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006b) Numbers and locations of native bacteria on field grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884

    PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2003) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J Plant Growth Regul 21:324–334

    Google Scholar 

  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013a) Root traits for infertile soils. Front Plant Sci 4:193

    PubMed  PubMed Central  Google Scholar 

  • White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013b) Matching roots to their environment. Ann Bot 112:207–222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wiesler F, Horst WJ (1993) Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching. Plant Soil 151:193–203

    CAS  Google Scholar 

  • Wiesler F, Horst WJ (1994) Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163:267–277

    CAS  Google Scholar 

  • Xu L, Niu J, Li C, Zhang F (2009) Growth, nitrogen uptake and flow in maize plants affected by root growth restriction. J Integr Plant Biol 51:689–697

    PubMed  CAS  Google Scholar 

  • Yan H, Li K, Ding H, Liao C, Li X, Yuan L, Li C (2011a) Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N. J Plant Physiol 168:1067–1075

    PubMed  CAS  Google Scholar 

  • Yan H, Shang A, Peng Y, Yu P, Li C (2011b) Covering middle leaves and ears reveals differential regulatory roles of vegetative and reproductive organs in root growth and nitrogen uptake in maize. Crop Sci 51:265–272

    Google Scholar 

  • York LM, Nord EA, Lynch JP (2013) Integration of root phenes for soil resource acquisition. Front Plant Sci 4:355

    PubMed  PubMed Central  Google Scholar 

  • Yu P, Li X, Yuan L, Li C (2014) A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Physiol Plant 150:133–144

    PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    PubMed  CAS  Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu JM, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize. Funct Plant Biol 32:749–762

    CAS  Google Scholar 

  • Zhu JM, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317

    PubMed  Google Scholar 

  • Zhuang J, Yu GR, Nakayama K (2001) Scaling of root length density of maize in the field profile. Plant Soil 235:135–142

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 31272232), the State Key Basic Research and Development Plan of China (No. 2013CB127402), the Innovative Group Grant of National Natural Science Foundation of China (No. 31121062), Chinese Universities Scientific Fund (No. 2012YJ039), Post-graduate Study Abroad Program of China Scholarship Council, and the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., White, P.J., Hochholdinger, F. et al. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240, 667–678 (2014). https://doi.org/10.1007/s00425-014-2150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2150-y

Keywords

Navigation