Skip to main content
Log in

Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The use of nitrogen (N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact. Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists, environmental groups, and agricultural policymakers worldwide. In high-yielding maize systems the major method of N loss is nitrate leaching. In this review paper, the characteristic of nitrate movement in the soil, N uptake by maize as well as the regulation of root growth by soil N availability are discussed. We suggest that an ideotype root architecture for efficient N acquisition in maize should include (i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil; (ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil; and (iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mann C C. Crop scientists seek a new revolution. Science, 1999, 283:310–314 1:CAS:528:DyaK1MXnsFOkug%3D%3D, 10.1126/science.283.5400.310

    Article  CAS  Google Scholar 

  2. London J G. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433:791 10.1038/433791a

    Article  Google Scholar 

  3. Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418:671–678 1:CAS:528:DC%2BD38XlvVyltb0%3D, 10.1038/nature01014, 12167873

    Article  PubMed  CAS  Google Scholar 

  4. Russell W A. Genetic improvement of maize yields. Adv Agron, 1991, 46:245–298 10.1016/S0065-2113(08)60582-9

    Article  Google Scholar 

  5. Duvick D N. Genetic contributions to advances in yield in U.S. maize. Maydica, 1992, 37:69–79

    Google Scholar 

  6. Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crop Res, 2002, 75:161–169 10.1016/S0378-4290(02)00024-2

    Article  Google Scholar 

  7. Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51:399–408

    Google Scholar 

  8. Dwyer L M, Tollenaar M. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Can J Plant Sci, 1989, 69:81–91 10.4141/cjps89-010

    Article  Google Scholar 

  9. Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program. In: Janick J, ed. Plant Breeding Reviews. New York: John Wiley & Sons, 2004. 109–151

    Google Scholar 

  10. Din L. The eco-physiological mechanisms of photosynthetic capacity improvement and yield increase of maize hybrids released in different years. Dissertation for Doctoral Degree. Beijing: Institute of Plant Science, Chinese Academy of Sciences, 2005

    Google Scholar 

  11. Xie Z J, Li M S, Xu J S, et al. Contributions of genetic improvement to yields of maize hybrids during different eras in north China. Sci Agri Sin, 2009, 42:781–789

    Google Scholar 

  12. Chen G P, Wang H R, Zhao J R. Analysis on yield structural model and key factors of maize high-yield plots. J Maize Sci, 2009, 17:89–93

    Google Scholar 

  13. Wang K J. Root physiological characters of maize genotypes with different yield potential and its relationship with above-ground growth. Dissertation for Doctoral Degree. Taian: Shandong Agric Univ, 2000

    Google Scholar 

  14. Lynch J P. Root architecture and plant productivity. Plant Physiol, 1995, 109:7–13 1:CAS:528:DyaK2MXotFWmsr0%3D, 12228579

    PubMed  CAS  PubMed Central  Google Scholar 

  15. King J, Gay A, Sylvester-Bradley R, et al. Modeling cereal root systems for water and nitrogen capture: Towards an economic optimum. Ann Bot, 2003, 91:383–390 1:CAS:528:DC%2BD3sXisVKis78%3D, 10.1093/aob/mcg033, 12547691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hammer G L, Dong Z, McLean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci, 2009, 49:299–312 10.2135/cropsci2008.03.0152

    Article  Google Scholar 

  17. Lynch J P, Beebe S E. Adaptation of beans to low soil phosphorus availability. HortScience, 1995, 30:1165–1171 1:CAS:528:DyaK2MXptV2rsro%3D

    CAS  Google Scholar 

  18. Lynch J P, Brown K M. Topsoil foraging-an architectural adaptation to low phosphorus availability. Plant Soil, 2001, 237:225–237 1:CAS:528:DC%2BD38XovVWltA%3D%3D, 10.1023/A:1013324727040

    Article  CAS  Google Scholar 

  19. Liao H, Yan X, Rubio G, et al. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol, 2004, 31:959–970 1:CAS:528:DC%2BD2cXosFSqu7s%3D, 10.1071/FP03255

    Article  CAS  Google Scholar 

  20. Zhao J, Fu J B, Liao H, et al. Evaluation of the root architecture traits for phosphorus efficiency of soybean core germplasm. Chin Sci Bull, 2004, 49:1249–1257

    Article  Google Scholar 

  21. Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol, 2005, 32:749–762 1:CAS:528:DC%2BD2MXmvVOgsLo%3D, 10.1071/FP05005

    Article  CAS  Google Scholar 

  22. Stevenson F J. Organic forms of soil nitrogen. In: Steven F J, ed. Nitrogen in Agricultural Soils. Madison: American Society of Agronomy Inc, 1982. 67–122

    Google Scholar 

  23. Legg J O, Meisinder J. Soil nitrogen budgets. In: Stevenson F J, ed. Nitrogen in Agricultural Soils. Agronomy, 1982, 22:503–507

  24. Barber S A. Soil nutrient bioavailability: a mechanistic approach. New York: John Wiley and Sons Inc, 1995

    Google Scholar 

  25. Liu G D, Wu W L. The dynamics of nitrate nitrogen leaching through soil in high-yield farmland ecosystem. Chinese J Eco-Agric, 2002, 10:71–74

    Google Scholar 

  26. Yuan X, Yang X Y, Tong Y A, et al. Effect of N-fertilizer rate on soil nitrate nitrogen accumulation. Agric Res Arid Area, 2001, 19:8–13, 39

    Google Scholar 

  27. Wang X N, Wang Z H, Li S X. The effect of nitrogen fertilizer rate on summer maize yield and soil water-nitrogen dynamics. Acta Ecol Sin, 2007, 27:197–204 10.1016/S1872-2032(07)60054-7

    Article  Google Scholar 

  28. Ju X, Liu X, Zhang L. the nitrogen cycling and its environmental effect in the winter wheat-summer maize rotation system in north China plain. In: Zhu Z, Zhang F S, eds. Nitrogen Behavior in the Major Arable Ecosystems in China and Efficient Use of Nitrogen Fertilizers. Beijing: Science Publisher, 2010. 55–106

    Google Scholar 

  29. Guo D, Feng Y. Relationship between nitrate movement and soil moisture in the irrigated soil. Irrig Drain, 2001, 20:66–68, 72

    Google Scholar 

  30. Gao Q. The bioavailability and fate of nitrate placed in different soil layers. Dissertation for Doctoral Degree. Beijing: China Agricultural University, 2003

    Google Scholar 

  31. Zhou S L. the genotypic difference in nitrogen nutrition characteristics in winger wheat and summer maize and nitrogen fertilizer recommendation under high-yielding conditions. Dissertation for Doctoral Degree. Beijing: China Agricultural University, 2000

    Google Scholar 

  32. van Vuuren M M I, Robinson D, Griffiths B S. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil, 1996, 178:185–192 10.1007/BF00011582

    Article  Google Scholar 

  33. Liu J A, Mi G H, Zhang F S. Maize genotypes and soil nitrogen apparent balance. Eco-Agric Res, 2000, 8:38–41 1:CAS:528:DC%2BD3cXkvVaqsrg%3D

    CAS  Google Scholar 

  34. Zhang L J, Ju X T, Gao Q, et al. Recovery of 15N-labelled nitrate injected into deep subsoil by maize in a calcaric cambisol in north China plain. Plant Nutri Ferti Sci, 2004, 10:455–461

    Google Scholar 

  35. Song H X, Li Shen X. Effects of root uptake function and soil water on NO 3 -N and NH +4 -N distribution. Sci Agri Sin, 2005, 38:96–101 1:CAS:528:DC%2BD28XkvVKks70%3D

    CAS  Google Scholar 

  36. Wang Y, Mi G H, Chen F J, et al. Genotypic differences in nitrogen uptake by maize inbred lines its relation to root morphology. Acta Ecol Sin, 2003, 23:297–302

    Google Scholar 

  37. Tian Q Y, Chen F J, Zhang F S, et al. Genotypic Difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth. J Plant Nutr, 2006, 29:317–330 1:CAS:528:DC%2BD28Xhtl2lsbw%3D, 10.1080/01904160500476905

    Article  CAS  Google Scholar 

  38. Tian Q Y, Chen F J, Liu J X, et al. Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J Plant Physiol, 2008, 165:942–951 1:CAS:528:DC%2BD1cXptlagurc%3D, 10.1016/j.jplph.2007.02.011, 17928098

    Article  PubMed  CAS  Google Scholar 

  39. Granato T C, Raper C D. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot, 1989, 40:263–275 1:CAS:528:DyaL1MXktVCgtb0%3D, 10.1093/jxb/40.2.263, 11542157

    Article  PubMed  CAS  Google Scholar 

  40. Sattelmacher B, Thoms K. Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a locally restricted nitrate supply. Zeitschrift für Pflanzenernährung und Bodenkunde, 1995, 158:493–497 1:CAS:528:DyaK2MXovFOqsb4%3D, 10.1002/jpln.19951580513

    Article  CAS  Google Scholar 

  41. Guo Y F, Mi G H, Chen F J, et al. Effect of NO 3 supply on lateral root growth in maize plants. J Plant Physiol Mol Biol, 2005a, 31:90–96 1:CAS:528:DC%2BD28XkvVKqtb0%3D

    CAS  Google Scholar 

  42. Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol, 2004, 162:9–24 10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  43. Guo Y F, Mi G H, Chen F J, et al. Genotypic difference of maize lateral roots in response to local nitrate supply. Plant Nutri Ferti Sci, 2005b, 11:155–159

    Google Scholar 

  44. Ju X T, Liu X J, Pan J R, et al. Nitrogen fate in winter wheat-summer maize system in north China Plain. In: Li Z Sh, ed. Exploring the Biological Potential for Efficient Use of Soil Nutrient and Sustain the Sound Recycling in Soil Environment. Beijing: Publisher of China Agric Univ, 2004. 250–292

    Google Scholar 

  45. Robert P, Durieux R P, Kamprath E J, et al. Root distribution of corn: the effect of nitrogen fertilization. Agron J, 1994, 86:958–962 10.2134/agronj1994.00021962008600060006x

    Article  Google Scholar 

  46. Wang Q X, Wang P, Yang X Y, et al. Effects of nitrogen application time on root distribution and its activity in maize. Sci Agri Sin, 2003, 36:1469–1475

    Google Scholar 

  47. Sun Q Q, Hu Ch H, Dong S T, et al. Evolution of root characters during all growth stages of maize cultivars in different era in China. Acta Agro Sin, 2003, 29:641–645

    Google Scholar 

  48. Fitter A H. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: the Hidden Half. New York: Marcel Dekker Inc, 1991. 3–25

    Google Scholar 

  49. Sinclair T R, Vadez V. Physiological traits for crop yield improvement in low N and P environments. Plant Soil, 2002, 245:1–151 1:CAS:528:DC%2BD38XnvVCitro%3D, 10.1023/A:1020624015351

    Article  CAS  Google Scholar 

  50. Robinson D. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil, 2001, 232:41–50 1:CAS:528:DC%2BD3MXlsVCks70%3D, 10.1023/A:1010377818094

    Article  CAS  Google Scholar 

  51. Wiesler F, Horst W J. Differences between maize cultivars in field formation, nitrogen uptake and associated depletion of soil nitrate. J Agron Crop Sci, 1992, 168:226–237 1:CAS:528:DyaK38XlslShu7w%3D, 10.1111/j.1439-037X.1992.tb01003.x

    Article  CAS  Google Scholar 

  52. Wiesler F, Horst W J. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching. Plant Soil, 1993, 151:193–203 1:CAS:528:DyaK3sXmt1Git74%3D, 10.1007/BF00016284

    Article  CAS  Google Scholar 

  53. Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil, 1994, 163:267–277 1:CAS:528:DyaK2MXislWmt7g%3D, 10.1007/BF00007976

    Article  CAS  Google Scholar 

  54. Chun L, Chen F J, Zhang F S, et al. Root growth, nitrogen uptake and yield formation of hybrid maize with different N deficiency. Plant Nutri Ferti Sci, 2005, 11:615–619

    Google Scholar 

  55. Mi G H, Chen F J, Chun L, et al. Biological characteristics of nitrogen efficient maize genotypes. Plant Nutri Ferti Sci, 2007, 13:155–159 1:CAS:528:DC%2BD1cXkvVals7g%3D

    CAS  Google Scholar 

  56. Liu J X, Chen F J, Olokhnuud C, et al. Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in nitrogen-use efficiency. J Plant Nutr Soil Sci, 2009, 172:230–236 1:CAS:528:DC%2BD1MXlt1yhtL0%3D, 10.1002/jpln.200800028

    Article  CAS  Google Scholar 

  57. Gallais A, Coque M, Quilléré I, et al. Modeling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field experiments. New Phytol, 2006, 172:696–707 1:CAS:528:DC%2BD28XhtlCjur%2FL, 10.1111/j.1469-8137.2006.01890.x, 17096795

    Article  PubMed  CAS  Google Scholar 

  58. Gallais A, Coque M, Gouis J L, et al. Estimating proportions of nitrogen remobilization and of postsilking nitrogen uptake allocated to maize kernels by nitrogen-15 labeling. Crop Sci, 2007, 47:685–691 1:CAS:528:DC%2BD2sXltlSht7c%3D, 10.2135/cropsci2006.08.0523

    Article  CAS  Google Scholar 

  59. Hochholdinger F, Tuberosa T. Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol, 2009, 12:172–177 1:CAS:528:DC%2BD1MXjsVOgtbk%3D, 10.1016/j.pbi.2008.12.002, 19157956

    Article  PubMed  CAS  Google Scholar 

  60. Landi P, Sanguineti M C, Liu C, et al. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot, 2007, 58:319–326 1:CAS:528:DC%2BD2sXhtlOltrc%3D, 10.1093/jxb/erl161, 17050640

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuSuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, G., Chen, F., Wu, Q. et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 53, 1369–1373 (2010). https://doi.org/10.1007/s11427-010-4097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4097-y

Keywords

Navigation