Skip to main content

Advertisement

Log in

Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic variation is prerequisite for wheat improvement. High grain yield and protein content and early maturity are some of the major objectives in global as well as Canadian wheat breeding programs. We investigated genetic diversity for earliness related and plant height reducing (Rht) genes in 82 spring wheat cultivars, registered in western Canada, through eight diagnostic DNA markers. Allelic variation was observed at the Vrn-A1, Vrn-B1, Vrn-D1 and Ppd-D1 loci but not at Ppd-A1 and Ppd-B1 loci in the 82 cultivars. Spring type allele of Vrn-A1 was present in 94 % cultivars, whereas only two cultivars carried spring allele of Vrn-D1. Among the four earliness related genes, the most frequent combination was Vrn-A1a, Vrn-B1, vrn-D1 and Ppd-D1b, which was found in 32 cultivars. As for the Rht genes, eight cultivars had Rht-B1b and 13 cultivars had Rht-D1b. All cultivars carrying dominant allele of Vrn-B1, photoperiod-insensitive allele of Ppd-D1 and height reducing allele of Rht-1 had shorter plants and higher grain yield but lower grain protein content. Days to heading and maturity showed positive genetic (rg = 0.65) and phenotypic (rp = 0.44) correlation, and were also positively correlated with grain yield and kernel weight but negatively correlated with test weight and protein content. Plant height was positively correlated with grain protein content (rg = 0.53; rp = 0.42), but negatively correlated with grain yield (rg = −0.47; rp = −0.14). Grain yield and protein content showed negative genetic correlation (rg = −0.57). Among the sixty cultivars from Canada Western Red Spring Class released over 100 years, the newest cultivar yielded 23 % more grain and had 15 % higher grain protein than the oldest cultivar ‘Red Fife’. Breeders in western Canada have incorporated vernalization and photoperiod insensitive and Rht genes in modern cultivars to promote early maturity, to make use of off-season nurseries abroad, and to improve lodging tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan RE (1989) Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci 29:1103–1108. doi:10.2135/cropsci1989.0011183X002900050001x

    Article  Google Scholar 

  • Andeden EE, Yediay FE, Baloch FS, Shaaf S, Kilian B, Nachit M, Ozkan H (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39:352–364. doi:10.1556/crc.39.2011.3.5

    Article  CAS  Google Scholar 

  • Beales J, Turner A, GriYths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. doi:10.1007/s00122-007-0603-4

    Article  PubMed  CAS  Google Scholar 

  • Blake N, Lanning S, Martin J, Doyle M, Sherman J, Naruoka Y, Talbert L (2009) Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations. Crop Sci 49:1211–1220

    Article  CAS  Google Scholar 

  • Börner A, Lehmann C, Mettin D (1987) Preliminary results of a screening for GA3 response in wheats of the Gatersleben gene bank. Die Kulturpflanze 35:179–186. doi:10.1007/BF02113275

    Article  Google Scholar 

  • Börner A, Worland A, Plaschke J, Schumann E, Law C (1993) Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Article  Google Scholar 

  • Borojevic K, Borojevic K (2005) The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but Is Not essential for flowering. PLoS Genet. doi:10.1371/journal.pgen.1003134

    Google Scholar 

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE. doi:10.1371/journal.pone.0033234

    Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184. doi:10.1016/j.pbi.2008.12.010

    Article  PubMed  CAS  Google Scholar 

  • Ellis M, Rebetzke G, Azanza F, Richards R, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  PubMed  CAS  Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the Green Revolution, 1960 to 2000. Science 300:758–762

    Article  PubMed  CAS  Google Scholar 

  • Fisher JE (1973) Developmental morphology of the inflorescence in hexaploid wheat cultivars with and without the cultivar Norin 10 in their ancestry. Can J Plant Sci 53:7–15

    Article  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65. doi:10.1007/s00438-004-1095-4

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding. Butterworths, London, pp 1–35

  • Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guedira M, Brown-Guedira G, Sanford DV, Sneller C, Souza E, Marshall D (2010) Distribution of genes in modern and historic winter wheat cultivars from the eastern and central USA. Crop Sci 50:1811–1822

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution TRENDS. Genetics 19:5–9

    CAS  Google Scholar 

  • Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–654. doi:10.2135/cropsci2005.0191

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112. doi:10.1002/9780470650202.ch2

    Google Scholar 

  • Iqbal M, Navabi A, Yang R-C, Salmon DF, Spaner D (2007a) The effect of vernalization genes on earliness and related agronomic traits of spring wheat in northern growing regions. Crop Sci 47:1031–1039. doi:10.2135/cropsci2006.09.0618

    Article  Google Scholar 

  • Iqbal M, Navabi A, Yang R-C, Salmon DF, Spaner D (2007b) Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50:511–516. doi:10.1139/g07-028

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, del Olmo I, Gomez-Zambrano A, Lazaro A, Lopez-Gonzalez L, Miguel E, Narro-Diego L, Saez D, Pineiro M (2008) Photoperiodic control of flowering time. Span J Agric Res 6:221–244

    Article  Google Scholar 

  • Kamran A, Randhawa HS, Pozniak C, Spaner D (2013) Phenotypic effects of the flowering gene complex in canadian spring wheat germplasm. Crop Sci 53:84–94. doi:10.2135/cropsci2012.05.0313

    Article  Google Scholar 

  • Kamran A, Kubota H, Yang R-C, Randhawa H, Spaner D (2014a) Relative performance of Canadian spring wheat cultivars under organic and conventional field conditions. Euphytica 196:13–24. doi:10.1007/s10681-013-1010-3

    Article  CAS  Google Scholar 

  • Kamran A, Randhawa HS, Yang R-C, Spaner D (2014b) The effect of VRN1 genes on important agronomic traits in high-yielding Canadian soft white spring wheat. Plant Breed 133:321–326. doi:10.1111/pbr.12149

    Article  CAS  Google Scholar 

  • Kiss T, Balla K, Veisz O, Lang L, Bedo Z, Griffiths S, Isaac P, Karsai I (2014) Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed 34:297–310. doi:10.1007/s11032-014-0034-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knopf C, Becker H, Ebmeyer E, Korzun V (2008) Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Res Commun 36:553–560

    Article  Google Scholar 

  • Korzun V, Röder M, Ganal M, Worland A, Law C (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Flowering time control in European winter wheat. Front Plant Sci 5:537. doi:10.3389/fpls.2014.00537

  • Leonova I, Pestsova E, Salina E, Efremova T, Röder M, Börner A, Fischbeck G (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed 122:209–212

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. Wheat Inf Serv 91:27–37

    Google Scholar 

  • Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie DA, Kato K (2013) Structural variation in the 5 ‘ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed 31:27–37. doi:10.1007/s11032-012-9765-0

    Article  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Santra DK, Santra M, Allan RE, Campbell KG, Kidwell KK (2009) Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the pacific northwest region of the USA. Plant Breed 128:576–584. doi:10.1111/j.1439-0523.2009.01681.x

    Article  CAS  Google Scholar 

  • Shcherban AB, Börner A, Salina EA (2015) Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed 134:49–55

    Article  CAS  Google Scholar 

  • Sherman JD, Martin JM, Blake NK, Lanning SP, Talbert LE (2014) Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci 54:1–13. doi:10.2135/cropsci2012.12.0710

    Article  CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 100:13099–13104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenland AJ, Boulton MI, Powell W (2013) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  PubMed  CAS  Google Scholar 

  • Worland A, Petrovic S, Law C (1988) Genetic analysis of chromosome 2D of wheat. Plant Breeding 100:247–259

    Article  Google Scholar 

  • Worland AJ, Appendino ML, Sayers EJ (1994) The distribution, in european winter wheats, of genes that influence ecoclimatic adaptability while determining photoperiodic insensitivity and plant height. Euphytica 80:219–228. doi:10.1007/bf00039653

    Article  Google Scholar 

  • Worland A, Korzun V, Röder M, Ganal M, Law C (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268. doi:10.1073/pnas.0937399100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644. doi:10.1126/science.1094305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586. doi:10.1073/pnas.0607142103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152:109–116

    Article  CAS  Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

Download references

Acknowledgments

The authors would like to acknowledge Klaus Strenzke, Lexie Martin, Corey Howard, Jennifer Ens, Enid Perez-Lara, Hiroshi Kubota, Izabela Ciechanowska, Fabiana Dias, Joe Back, Russell Puk and Joseph Moss for technical assistance. This research was supported by grants to the University of Alberta wheat breeding program from the Alberta Crop Industry Development Fund, Western Grains Research Foundation Endowment Fund and an NSERC Discovery Grant to D. Spaner. This work was conducted in part within the project “Canadian Triticum Advancement through Genomics (CTAG)”. We would like to acknowledge “CTAG” funding provided by the Saskatchewan Ministry of Agriculture, Western Grains Research Foundation, Agriculture and Agri-Food Canada and Genome Canada and Genome Alberta. The first author received a scholarship from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Spaner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Moakhar, N.P., Iqbal, M. et al. Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica 208, 377–390 (2016). https://doi.org/10.1007/s10681-015-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1615-9

Keywords

Navigation