Skip to main content
Log in

QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Arabinoxylans (AX) are major polymers of wheat grain cell walls and affect the end-use properties and nutritional quality. Total (TOT-AX), water-unextractable (WU-AX), and water-extractable (WE-AX) AX contents were determined in grain of 240 recombinant inbred wheat lines (RILs), derived from the cross PH82-2/Neixiang 188. A total of 195 SSR and STS markers were used to construct a genetic map and to detect quantitative trait loci (QTL). Wide ranges of variation in TOT-AX, WU-AX, and WE-AX contents were observed among the RILs, with line effects contributing the largest phenotypic variation. Broad sense heritabilities (h 2) were 0.50, 0.38 and 0.71, respectively. Inclusive composite interval mapping (ICIM) identified four additive QTL for TOT-AX content on chromosomes 1B, 1D, 3B and 5B, explaining 3.7–14.6 % of the phenotypic variance (PV), among which two were involved in significant additive × season interactions, contributing 0.5–2.4 % of the PV. Two additive QTL for WU-AX content were identified on chromosomes 1B and 1D, accounting for 6.4 and 8.6 % of the PV, respectively; both were involved in significant additive × season interactions, contributing 0.6–1.4 % of the PV. Nine additive QTL for WE-AX content were identified on chromosomes 1A, 1B, 2B, 3B, 5A, 5B, 6B, 7A and 7B, explaining 3.8–15.2 % of the PV, and three of them were involved in significant additive × season interactions, contributing 0.5–2.1 % of the PV. Two pairs of epistatic QTL, with significant epistatic × season interactions, were identified for TOT-AX and WU-AX contents, contributing 16.6 and 18.6 % of the PV, respectively. The QTL identified on chromosomes 1B (associated with rye secalin marker sec1), 5A, 5B and 7A showed stable effects on WE-AX content across seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AX:

Arabinoxylans

TOT-AX:

Total arabinoxylans

WU-AX:

Water-unextractable arabinoxylans

WE-AX:

Water-extractable arabinoxylans

ICIM:

Inclusive composite interval mapping

PV:

Phenotypic variance

QTL:

Quantitative trait loci/locus

RIL:

Recombinant inbred line

MAS:

Marker-assisted selection

References

  • AACC (2000) Approved methods of the American Association of Cereal Chemists, 10th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Becker WA (1984) Quantitative genetics. Washington State University Press, Seattle

    Google Scholar 

  • Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F (2011) Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci 54:137–147

    Article  Google Scholar 

  • Burnett C, Lorenz K, Carver B (1995) Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica 86:159–166

    Google Scholar 

  • Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, Perretant M, Joseph J, Rakszegi M, Guillon F, Sado P (2009) Genetics of dietary fibre in bread wheat. Euphytica 170:155–168

    Article  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Cullis BR, Gleeson AC (1991) Spatial analysis of field experiments-an extension to two dimensions. Biometrics 47:1449–1460

    Article  Google Scholar 

  • Dornez E, Gebruers K, Delcour JA, Courtin CM (2009) Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends Food Sci Tech 20:495–510

    Article  CAS  Google Scholar 

  • Dornez E, Gebruers K, Joye IJ, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour JA, Courtin CM (2008) Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 47:180–189

    Article  CAS  Google Scholar 

  • Finnie S, Bettge A, Morris C (2006) Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem 83:617–623

    Article  CAS  Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Envir St 2:269–273

    Article  Google Scholar 

  • Groos C, Bervas E, Chanliaud E, Charmet G (2007) Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. Theor Appl Genet 115:313–323

    Article  PubMed  CAS  Google Scholar 

  • Gruppen H, Hamer RJ, Voragen AG (1992) Water-unextractable cell wall material from wheat flour. 1. Extraction of polymers with alkali. J Cereal Sci 16:41–51

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Kiszonas AM, Courtin CM, Morris CF (2012) A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay. Cereal Chem 89:143–150

    Article  CAS  Google Scholar 

  • Li HH, Ribaut JM, Li ZL, Wang JK (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, Saulnier L, Shewry PR, Mitchell RAC (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163:95–107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinant JP, Billot A, Bouguennec A, Charmet G, Saulnier L, Branlard G (1999) Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. J Cereal Sci 30:45–48

    Article  CAS  Google Scholar 

  • Martinant JP, Cadalen T, Billot A, Chartier S, Leroy P, Bernard M, Saulnier L, Branlard G (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor Appl Genet 97:1069–1075

    Article  CAS  Google Scholar 

  • Mendis M, Simsek S (2014) Arabinoxylans and human health. Food Hydrocolloid 42:239–243

    Article  CAS  Google Scholar 

  • Nguyen VL, Huynh BL, Wallwork H, Stangoulis J (2011) Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Sci 51:1143–1150

    Article  Google Scholar 

  • Ordaz-Ortiz J, Saulnier L (2005) Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J Cereal Sci 42:119–125

    Article  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11:71–83

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2000) SAS/STAT user's guide. SAS institute, Cary, NC

  • Saulnier L, Sado P-E, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Selanere ML, Andersson R (2002) Cell wall composition of 1B/1R translocation wheat grains. J Sci Food Agr 82:538–545

    Article  CAS  Google Scholar 

  • Shewry PR, Charmet G, Branlard G, Lafiandra D, Gergely S, Salgó A, Saulnier L, Bedő Z, Mills ENC, Ward JL (2012) Developing new types of wheat with enhanced health benefits. Trends Food Sci Tech 25:70–77

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira G, Gay G, Qi L, Gill B, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • USDA (2015) Wheat: World Markets and Trade. http://apps.fas.usda.gov/psdonline/circulars/grain-wheat.pdf

  • Yang L, Huang YL, Chang P, Yan J, Zhang YL, Xia XC, Tian YB, He ZH, Zhang Y (2014) QTL Mapping for arabinoxylans content and its relationship with processing quality in common wheat. Acta Agron Sin 40:1695–1701

    Article  CAS  Google Scholar 

  • Zhang QJ, Qian SH, Zhang Y, He ZH, Yao D (2005a) Variation of pentosans in Chinese soft wheat cultivars and correlations with cookie quality. Sci Agric Sin 38:1734–1738

    CAS  Google Scholar 

  • Zhang Y, Zhang Y, He ZH, Ye GY (2005b) Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica 143:209–222

    Article  CAS  Google Scholar 

  • Zhang Y, He ZH, Zhang AM, van Ginkel M, Ye GY (2006) Pattern analysis on grain yield performance of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Euphytica 147:409–420

    Article  Google Scholar 

  • Zhang YL, Wu YP, Xiao YG, Yan J, Zhang Y, Zhang Y, Ma CX, Xia XC, He ZH (2009) QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft × hard wheat cross. Crop Pasture Sci 60:587–597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Prof. R.A. McIntosh, Plant Breeding Institute, University of Sydney, Australia, for kindly reviewing this manuscript. This study was supported by the National Basic Research Program (2014CB138105), Core Research Budget of the Non-profit Governmental Research Institutions (ICS, CAAS), National 863 Program (2012AA101105), International Collaboration Project from the Ministry of Agriculture of China (2011-G3), and the China Agriculture Research System (CARS-3-1-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhao, D., Yan, J. et al. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica 208, 205–214 (2016). https://doi.org/10.1007/s10681-015-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1576-z

Keywords

Navigation