Skip to main content
Log in

Genetic and physical mapping of a new allele of Pik locus from japonica rice ‘Liziangxintuanheigu’

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The Chinese rice “Liziangxintuanheigu (LTH)” has been used as a universal susceptible background for the development of international monogenic blast differentials by the JIRCAS–IRRI network. Few reports on the occurrence of LTH incompatible blast isolates from the Philippines and India indicate that the genotype harbours unknown blast resistance gene(s). We report identification, mapping and physical delimitation of the chromosomal location of a new blast resistance gene from LTH. Preliminary linkage analysis of an F2 mapping population generated from a cross between a susceptible cv. ‘Dular’ and LTH localized the blast resistance gene between simple sequence repeat (SSR) markers RM224 and RM6293 on the distal end of the long arm of chromosome 11. Further mapping with polymorphic SSR and sequence tagged site (STS) markers developed from the interval RM224–RM6293 delimited the resistance gene to a 2 cM interval flanked by STS markers STS-7 and STS-13. By aligning the sequences of linked markers on the sequence of cv. Nipponbare, a ~168.05 kb region at the telomeric end of long of chromosome 11 was delineated as the region of the blast resistance gene. Six putatively expressed NBS–LRR genes were identified in the target region by surveying the equivalent genomic region of Nipponbare and two of these, LOC_Os11g46200 and LOC_Os11g46210, were short-listed as a potential candidate for the resistance gene. The new blast resistance gene designated as Pik-l was inferred to be a new allele of Pik locus based on its genomic position and distinct resistance spectra compared to previously known Pik alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pik-m specific rice blast resistance. Genetics 180:2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad of Sci USA 106:9519–9524

    Article  CAS  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J (2011) A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38:209–216

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhu X, Xu J, Chen H, He Z (2009) Map-based cloning and breeding application of a broad-spectrum resistance gene Pigm to rice blast. In: Wang GL, Valent B (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Netherlands, pp 161–171

    Chapter  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS–LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep. doi:10.1038/srep04550

    Google Scholar 

  • Fukuta Y, Xu DH, Kobayashi N, Telebanco-Yanoria MJ, Hairmansis A, Hayashi N (2009) Genetic characterization of universal differential varieties for blast resistance developed under the IRRI-Japan Collaborative Research Project using DNA markers in rice (Oryza sativa L.). JIRCAS 63:35–68

    CAS  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Shepherd KW (1991) Present status of genetics of rust resistance in flax. Euphytica 55:255–267

    Article  Google Scholar 

  • Koide Y, Telebanco-Yanoria MJ, Dela-Pena FD, Fukuta Y, Kobayashi N (2010) Characterization of rice blast isolates by the differential system and their application for mapping a resistance gene, Pi19(t). J Phytopathol 159:85–93

    Article  Google Scholar 

  • Koide Y, Telebanco-Yanoria MJ, Fukuta Y, Kobayashi N (2013) Detection of novel blast resistance genes Pi58(t) and Pi59(t) in a Myanmar rice landrace based on a standard differential system. Mol Breed 32:241–252

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Le MT, Arie T, Teraoka T (2010) Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. J Gen Plant Pathol 76:177–182

    Article  Google Scholar 

  • Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5 mediated resistance to Magnaporthe oryzae requires the presence of two Nucleotide-Binding-Leucine-Rich-Repeat genes. Genetics 181:1627–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X (2007) The blast resistance gene Pi37 encodes an NBS–LRR protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007a) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Yang Q, Lin F, Hua L, Wang C, Wang L, Pan Q (2007b) Identification and fine mapping of Pi39(t) a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics 278(4):403–410

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Reycel M, Li Zhikang, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia blast resistance gene consisting of two adjacent NBS–LRR protein genes. Plant J 66:467–479

    Article  CAS  PubMed  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, UK, p 380

    Google Scholar 

  • Padmavathi G, Ram T, Satyanarayana K, Mishra B (2005) Identification of blast (Magnaporthe grisea) resistance genes in rice. Curr Sci 88:628–630

    Google Scholar 

  • Pan QH, Wang L, Ikehashi H, Yamagata H, Tanisaka T (1998) Identification of two new genes conferring resistance to rice blast in Chinese native rice cultivar ‘‘Maowangu’’. Plant Breed 117:27–31

    Article  Google Scholar 

  • Qu S, Liu G, Zhou B, Belliz M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a Nucleotide-Binding Site Leucine-Rich Repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rathour R, Singh BM, Sharma TR (2004) Population structure of Magnaporthe grisea from north western Himalayas and its implications for blast resistance breeding of rice. J Phytopathol 152:304–312

    Article  Google Scholar 

  • Rathour R, Katoch A, Kusum Kaushik RP, Sharma TR (2011) Virulence analysis of Magnaporthe oryzae for resistance gene deployment in north-western Himalayas. Plant Dis Res 26:183

    Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428. doi:10.1371/journal.pone.0066428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803

    CAS  PubMed  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site–leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK (2005) High-resolution mapping, cloning and molecular characterization of the Pik-h gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics 274:569–578

    Article  CAS  PubMed  Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna BN, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agric Res 1:37–52

    Article  Google Scholar 

  • Shim KS, Cho SK, Jeung JU, Jung KW, You MK, Ok SH, Chung YS, Kang KH, Hwang HG, Choi HC, Moon HP, Shin JS (2004) Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Rep 22:599–607

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol. doi:10.1186/1471-2229-10-175

    Google Scholar 

  • Thakur S, Singh PK, Rathour R, Variar M, Prashanthi SK, Gopalakrishnan S, Singh AK, Singh UD, Chand D, Singh NK, Sharma TR (2014) Genotyping and development of single-nucleotide polymorphism (SNP) markers associated with blast resistance genes in rice using Golden Gate assay. Mol Breed 34:1449–1463

    Article  CAS  Google Scholar 

  • Tsunematsu H, Yanoria MJT, Ebron LA, Hayashi N, Ando I, Kato H, Imbe T, Khush GS (2000) Development of monogenic lines of rice for blast resistance. Breed Sci 50(3):229–234

    Article  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wang L, Xu X, Lin F, Pan Q (2009) Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology 99(8):900–905

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Jia Y, Wen JW, Liu WP, Liu XM, Li L, Jiang JH, Zhang JH, Guo XL, Ren JP (2013) Identification of rice blast resistance genes using international monogenic differentials. Crop Prot 45:109–116

    Article  CAS  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao W, Yang Q, Wang H, Guo T, Liu Y, Zhu X, Chen Z (2011) Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breeding 28(3):303–312

    Article  CAS  Google Scholar 

  • Xu X, Hayashi N, Wang CT, Kato H, Fujimura T, Kawasaki S (2008) Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h differentiating isolates. Mol Breed 22(2):289–299

    Article  CAS  Google Scholar 

  • Yang Q, Lin F, Wang L, Pan Q (2009) Identification and mapping of Pi41 a major gene conferring resistance to rice blast in the Oryza sativa subspecies indica reference cultivar 93–11. Theor Appl Genet 118:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Zeigler RS, Cuoc LX, Scott RP, Bernardo MA, Chen DH, Valent B, Nelson RJ (1995) The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology 85:443–451

    Article  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE. doi:10.1371/journal.pone.0098067

    Google Scholar 

  • Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA 91:8675–8679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Y. Fukuta, International Rice Research Institute, Philippines, for providing the seeds of rice cv. Liziangxintuanheigu.

Conflict of interest

The authors declare that no conflict of interests exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rathour.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Table S1 (DOCX 34 kb)

Table S2 (DOCX 29 kb)

Table S3 (DOCX 24 kb)

Table S4 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, W.H., Kapila, R.K., Sharma, T.R. et al. Genetic and physical mapping of a new allele of Pik locus from japonica rice ‘Liziangxintuanheigu’. Euphytica 205, 889–901 (2015). https://doi.org/10.1007/s10681-015-1437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1437-9

Keywords

Navigation