Skip to main content
Log in

Transferability of rice SSR markers to Miscanthus sinensis, a potential biofuel crop

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Miscanthus sinensis (M. sinensis) is a perennial C4 photosynthesis grass, with high yield, high efficiency of water usage, low fertilizer requirement, tolerance to extreme environments, and is one of the plant species with good biofuel potential. Simple sequence repeat (SSR) markers are highly informative and widely used in plant genetic studies. In this study, 88 SSR primer pairs derived from the rice genome, including 47 EST-SSRs (eSSRs) and 41 genomic SSRs (gSSRs), were evaluated for cross-species transferability to M. sinensis. Forty-one SSR primer pairs in total could successfully amplify DNA fragments in M. sinensis, showing an overall transferability rate of 46.6 % between rice and M. sinensis. The transferability rate of eSSR (51.1 %) was higher than that of gSSR (41.5 %). A total of 140 SSR loci and 340 alleles in the set of rice and M. sinensis germplasm collections were detected. Nei’s gene diversity varied from 0 to 0.72 and averaged 0.35. Shannon’s information index varied from 0 to 1.49 and averaged 0.56. The observed heterozygosity ranged from 0 to 0.95 and averaged 0.08. Thirty-nine loci (27.86 %) were shown heterozygosity out of 140 SSR loci. A dendrogram based on genetic distance showed a significant geographic differentiation. Our results indicated that 46.6% of the rice SSR markers are transferable to M. sinensis, and are useful for germplasm evaluation and genetic analysis in M. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genoemes. Proc Natl Acad Sci 90(17):7980–7984

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Churchill GA et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186

    Article  CAS  PubMed  Google Scholar 

  • Bassam NE (1998) C3 and C4 plant species as energy sources and their potential impact on environment and climate. Renew Energy 15:205–210

    Article  Google Scholar 

  • Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    Article  Google Scholar 

  • Bennetzen JL, Freeling M (1997) The unified grass genome: synergy in synteny. Genome Res 7(4):301–306

    CAS  PubMed  Google Scholar 

  • Brenchley R, Spanning M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 705(491):705–710

    Article  Google Scholar 

  • Chabane K, Ablett G et al (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52(7):903–909

    Article  CAS  Google Scholar 

  • Chandler VL, Wessler S (2001) Grasses: a collective model genetic system. Plant Physiol 125(3):1155–1156

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Peng J (2011) Transferability of wheat (Triticum aestivum) EST-derived SSR markers to several potential energy plants in Gramineae. Plant Sci J 29(6):696–703

    Article  CAS  Google Scholar 

  • Chen X, Cho YG et al (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genomics 268(3):331–343

    Article  CAS  PubMed  Google Scholar 

  • Cho YG, Ishii T et al (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100(5):713–722

    Article  CAS  Google Scholar 

  • Dai LJ, Wang B et al (2013) Transferability of genomic simple sequence repeat and expressed sequence tag-simple sequence repeat markers from sorghum to Miscanthus sinensis, a potential biomass crop. Crop Science. doi:10.2135/cropsci2011.12.0671

  • Freeling M (2001) Grasses as a single genetic system. Plant Physiol 125(3):1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282(5389):656–659

    Article  CAS  PubMed  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classfication of the Grasses (Poaceae). Ann Missouri Bot Gard 88:373–457

    Google Scholar 

  • Greef J, Deuter M (1993) Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angewandte Botanik 67:87–90

    Google Scholar 

  • Harushima Y, Yano M et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494

    CAS  PubMed  Google Scholar 

  • Hernández P, Dorado G et al (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102(4):616–622

    Article  Google Scholar 

  • Kadmon R, Pulliam HR (1993) Island biogeography: effect of geographical isolation on species composition. Ecology 74(4):978–981

    Article  Google Scholar 

  • Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci 95:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Crow JF (1964) The number of allels that can be maintained in a finite population. Genetics 49(4):725–738

    CAS  PubMed  Google Scholar 

  • Kowalski SP, Lan TH et al (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138(2):499–510

    CAS  PubMed  Google Scholar 

  • Kurata N, Moore G et al (1994) Conservation of genome structure between rice and wheat. Nat Biotechnol 12(3):276–278

    Article  CAS  Google Scholar 

  • Lawrence CJ, Walbot V (2007) Translational genomics for bioenergy production from fuelstock grasses: Maize as the model species. Plant Cell 19(7):2091–2094

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski I, Clifton-Brown JC et al (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Saha MC et al (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48(4):637–647

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117(2):307–310

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70(12):3321–3323

    Google Scholar 

  • NSBC (2007) China energy statistic year book. China Statistic, Beijing

    Google Scholar 

  • Paterson AH, Bowers JE et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  CAS  PubMed  Google Scholar 

  • Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Korol AB et al (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10(10):1509–1531

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Bai Y et al (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135(1):95–122

    Article  CAS  PubMed  Google Scholar 

  • Prince JP, Pochard E et al (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36(3):404–417

    Article  CAS  PubMed  Google Scholar 

  • Roder MS, Plaschke J et al (1995) Abundance, variability and chromosomal location microsatellites in wheat. Mol Gen Genet 246(3):327–333

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

  • Smith JSC, Chin ECL et al (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Somerville C, Youngs H et al (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5):748–749

    CAS  PubMed  Google Scholar 

  • Tang J, Gao L et al (2006) Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica 151(1):87–93

    Article  CAS  Google Scholar 

  • Tang H, Bowers JE et al (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Sigmund R et al (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168(1):195–202

    Article  CAS  Google Scholar 

  • Wang ML, Barkley NA et al (2005) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour 3(01):45–57

    Article  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Yu J, Hu S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Bernard M et al (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111(4):677–687

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yu J et al (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53:232–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Natural Science Foundation of China (NSFC) Grant Nos. 30870233 and 31030055, and the Chinese Academy of Sciences under the Important Directional Program of Knowledge Innovation Project Grant No. KSCX2-YW-Z-0722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Zhao, H., Zhu, T. et al. Transferability of rice SSR markers to Miscanthus sinensis, a potential biofuel crop. Euphytica 191, 455–468 (2013). https://doi.org/10.1007/s10681-013-0915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0915-1

Keywords

Navigation