Skip to main content
Log in

Evaluation of genetic diversity and root traits of sea beet accessions of the Adriatic Sea coast

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Thirty-nine sea beet [Beta vulgaris L. ssp. maritima (L.) Arcang.] accessions of the Adriatic coast were screened genetically and for their adaptive morpho-functional root traits in order to identify new sources of abiotic resistances for sugar beet breeding programs. Genetic diversity was evaluated with 21 microsatellites markers that identified 44 polymorphic alleles. Sea beets grouped into two main clusters: the West and the East Adriatic coast groups, with the latter showing higher genetic diversity. Among sea beet accessions with desirable root traits, four accessions have proved to be interesting for sugar beet [B. vulgaris (L.) ssp. vulgaris] breeding aimed to improve tolerance to nutritional stresses. Lastovo (ID 29) and Zut (ID 34) accessions were characterized by the highest values of RER, TRL, FRL and RSA still maintaining a high value of RTD, while Grado (ID 21) an Portic (ID 23) accessions were characterized by the highest RTD, but with low values of RER, TRL, FRL and RSA parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RER:

Root elongation rate

TRL:

Total root length

FRL:

Fine root length

RSA:

Root surface area

RTD:

Root tips density

References

  • Ahmad MSA, Ashraf M, Ali Q (2010) Soil salinity as a selection pressure is a key determinant for the evolution of salt tolerance in Blue Panicgrass (Panicum antidotale Retz.). Flora 205:37–45

    Article  Google Scholar 

  • Arnaud JF, Viard F, Delescluse M, Cuguen J (2003) Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages. Proc R Soc Lond B Biol Sci 270:1565–1571

    Article  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solution and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–483

    CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia (Bratisl) 13:1–13

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2010) Root apex transition zone: a signalling-response nexus in the root. Trends in Plant Sci 15:402–408

    Article  Google Scholar 

  • Barlow P (2010) Plant roots: autopoietic and cognitive constructions. Plant Root 4:40–52

    Article  Google Scholar 

  • Bartsch D, Ellstrand NC (1999) Genetic evidence for the origin of Californian wild beets (genus Beta). Theor Appl Genet 99:1120–1130

    Article  Google Scholar 

  • Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8:1733–1741

    Article  PubMed  Google Scholar 

  • Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P (2002) The origin of rhizomania resistance in sugar beet. Euphytica 127:383–397

    Article  CAS  Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Bradshow J (ed) Handbook of Plant Breeding, vol 4, Tuber and Root Crops. Springer, New York, pp 173–219

    Google Scholar 

  • Biancardi E, Panella LW, Lewellen RT (2012) Beta maritima: the origin of beets. Springer, New York, pp 293

    Google Scholar 

  • Butterfass T (1964) Die Chloroplastenzahlen in verschiedenartigen Zellen trisomer Zuckerrüben (Beta vulgaris L.). Z Bot 52:46–77

    Google Scholar 

  • Cacco G, Saccomani M, Ferrari G (1983) Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiol Plant 58:171–174

    Article  CAS  Google Scholar 

  • Calvo Garzón P, Keijzer F (2011) Plants: adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior 19:155–171

    Article  Google Scholar 

  • Cuguen J, Arnaud JF, Delescluse M, Viard F (2003) Crop-wild interaction within the Beta vulgaris complex: a comparative analysis between seabeet and weed beet populations within the French sugarbeet production area. In: Nijs HCMD, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI, Wallingford, pp 183–201

    Google Scholar 

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, van Dijk H (1999) Genetic diversity and gene Xow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and PCR-based methods. Theor Appl Genet 98:1194–1201

    Article  CAS  Google Scholar 

  • Driessen S (2003) Beta vulgaris ssp. maritima an Deutschlands Ostseeküste. Dissertation, RWTH Aachen University

  • Driessen S, Pohl M, Bartsch D (2001) RAPD-PCR analysis of the genetic origin of sea beet (Beta vulgaris ssp. maritima) at Germany’s Baltic Sea coast. Basic Appl Ecol 2:341–349

    Article  CAS  Google Scholar 

  • Farzad Haerizadeh A, Mohan B, Singh A, Prem L, Bhalla AB (2011) Transcriptome profiling of soybean root tips. Funct Plant Biol 38:451–461

    Google Scholar 

  • Fénart S, Arnaud JF, De Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077

    Article  PubMed  Google Scholar 

  • Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9:196–202

    Article  PubMed  Google Scholar 

  • Fita A, Roig C, Picó B, Nuez F (2008) Natural variation in root structure within Cucumis melo L studied in vitro. In: Prohens J, Badenes ML (eds) Modern variety breeding for present and future needs. p 372–376

  • Ford-Lloyd BV (2005) Sources of genetic variation, genus Beta. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers Inc, Enfield, pp 25–33

    Google Scholar 

  • Frese L (2010) Conservation and access to sugarbeet germplasm. Sugar Tech 12:207–219

    Article  Google Scholar 

  • Gallardo M, Jackson LE, Thompson RB (1996) Shoot and root physiological responses to localized zones of soil moisture in cultivated and wild lettuce (Lactuca spp.). Plant Cell Environ 19:1169–1178

    Article  Google Scholar 

  • Goodrich J, Wiener P (2005) A walk from the wild side: the genetics of domestication of livestock and crops. BioEssays 27:574–576

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT, a program for IBM PC compatibles to calculate Weir and Cokerham’s (1984) estimators of F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hill JO, Simpson RJ, Moore AD, Chapman DF (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 286:7–19

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jackson LE (1995) Root architecture in cultivated and wild lettuce (Lactuca spp.). Plant Cell Env 18:885–894

    Article  Google Scholar 

  • Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Botany 108:407–418

    Article  CAS  Google Scholar 

  • Kyndt T, Denil S, Haegeman A, Trooskens G, De Meyer T, Van Criekinge W, Gheysen G (2012) Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. J Exp Bot 63:2141–2157

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, St.Clair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res 90:101–115

    Article  Google Scholar 

  • Marcum KB, Engelke MC, Morton SJ, White RH (1995) Rooting characteristics and associated drought resistance of zoysiagrass. Agron J 87:534–538

    Article  Google Scholar 

  • McGrath JM, Derrico CA, Yu Y (1999) Genetic diversity in selected, historical US sugarbeet germplasm and Beta vulgaris ssp. maritima. Theor Appl Genet 98:968–976

    Article  Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007a) Genome Mapping and Molecular Breeding in Plants. In: Kole C (ed) Vegetables, vol 5. Springer-Verlag, Berlin Heidelberg, pp 135–151

    Chapter  Google Scholar 

  • McGrath JM, Trebbi D, Fenwick A, Panella L, Schulz B, Laurent V, Steve B, Murray SC (2007b) An open-source first-generation molecular genetic map from a sugarbeet x table beet cross and its extension to physical mapping. Plant Genome 47:S27–S44

    Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400

    Article  CAS  Google Scholar 

  • Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331

    Article  PubMed  Google Scholar 

  • Rellán-Alvarez R, Andaluz S, Rodríguez-Celma J, Wohlgemuth G, Zocchi G, Alvarez-Fernández A, Fiehn O, López-Millán AF, Abadía J (2010) Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 21(10):120

    Article  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  PubMed  CAS  Google Scholar 

  • Richards CM, Brownson M, Mitchell SE, Kresovich S, Panella L (2004) Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (Beta vulgaris). Mol Ecol Notes 4:243–245

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.1 manual. Applied Biostatistics Inc, New York

  • Ross-Ibarra J, Morell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci 104:8641–8648

    Article  PubMed  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Saccomani M, Stevanato P, Trebbi D, McGrath JM, Biancardi E (2009) Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 169:19–29

    Article  Google Scholar 

  • Seiler GJ (1994) Primary and lateral root elongation of sunflower seedlings. Environ Exp Bot 34:409–418

    Article  Google Scholar 

  • Smulders MJM, Esselink GD, Everaert I, Riek JD, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 11:41

    Article  PubMed  Google Scholar 

  • Stevanato P, De Biaggi M, Skaracis GN, Colombo M, Mandolino G, Biancardi E (2001) The sea beet (Beta vulgaris L. ssp. maritima) of the Adriatic coast as source of resistance for sugar beet. Sugar Tech 3:77–82

    Article  Google Scholar 

  • Stevanato P, Cagnin M, Saccomani M (2006) Meccanismi morfofisiologici di adattamento allo stress idrico-nutrizionale in barbabietola da zucchero. Agroindustria 5:131–136

    Google Scholar 

  • Stevanato P, Trebbi D, Saccomani M (2010) Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate. Euphytica 173:289–298

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000

    Article  PubMed  CAS  Google Scholar 

  • Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil 255:157–167

    Article  CAS  Google Scholar 

  • Viard F, Arnaud JF, Delescluse M, Cuguen J (2004) Tracing back seed and pollen flow within the crop-wild Beta vulgaris complex: genetic distinctiveness vs. hot spots of hybridization over a regional scale. Mol Ecol 13:357–1364

    Article  Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–999

    Article  PubMed  Google Scholar 

  • Wehres U (2007) Untersuchungen zu potentiellen ökologischen Effekten von gentechnisch vermittelter Nematodenresistenz auf pflanzengenetische Ressourcen am Beispiel der Zuckerrüben-Wildform (Beta vulgaris ssp. maritima). Dissertation, RWTH Aachen University

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Franco Bertaggia and Ms. Roberta Pellizzato for their kind help during sea beet sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Stevanato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanato, P., Trebbi, D., Biancardi, E. et al. Evaluation of genetic diversity and root traits of sea beet accessions of the Adriatic Sea coast. Euphytica 189, 135–146 (2013). https://doi.org/10.1007/s10681-012-0775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0775-0

Keywords

Navigation