Skip to main content
Log in

Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Beta vulgaris genetic resources are essential for broadening genetic base of sugar beet and developing cultivars adapted to adverse environmental conditions. Wild beets (sea beets, B. vulgaris spp. maritima and their naturalized introgressions with cultivated beets known as ruderal beets) harbor substantial genetic diversity that could be useful for beet improvement. Here, we compared molecular and morpho-physiological traits of wild beets collected on the Adriatic coast of Italy with sugar beet using eight primer-pairs amplifying 194 polymorphic fragments and four root traits (glucose and fructose content in the root tip, root elongation rate, number of the of root tips, total root length and its distribution among diameters ranges). Genetic diversity was higher in the sea beet accession, which may be due to the highly variable selection pressures that occur in heterogeneous ecological niches, compared with the ruderal and cultivated beets. Sea and sugar beet accessions showed contrasting root patterns in response to sulfate deprivation: sugar beet showed an increase of reducing sugars in the root tips and higher root elongation rate, and the sea beet accession showed an increase in root tip number, total root length and fine root length (average diameter < 0.5 mm). The ruderal beet showed intermediary responses to sea and sugar beet accessions. AFLP and morpho-physiological cluster analyzes showed sea, ruderal and cultivated beets to be genetically distinct groups. The results of this study indicate variability in response to sulfate deprivation is present in undomesticated beets that could be deployed for sugar beet improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiken RM, Smucker AJM (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34:325–346. doi:10.1146/annurev.phyto.34.1.325

    Article  PubMed  CAS  Google Scholar 

  • Ali GM, Yasumoto S, Seki-Katsuta M (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. Electron J Biotechnol 10:12–23. doi:10.2225/vol10-issue1-fulltext-16

    Article  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solution and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–483

    CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia (Bratisl) 13(suppl 59):1–13

    Google Scholar 

  • Bartsch D, Stevanato P, Lehnen M, Mainolfi A, Mücher T, Morchella A, Driessen S, Mandolino G, Hoffmann A, De Biaggi M, Wehres U, Biancardi E (2002) Biodiversity of sea beet in northern Italy. Proceedings of the 65th International Institute for Beet Research Congress, pp 171–180

  • Baythavong BS (2007) Assessing the biological relevance of edaphic heterogeneity: genetic differentiation and phenotypic plasticity in an invasive annual plant, Erodium cicutarium. ESA/SER Joint Meeting (August 5- August 10, 2007) Poster Abstract COS 154-5, San Jose, California

  • Bell DL, Sultan SE (1999) Dynamic phenotypic plasticity for root growth in Polygonum: a comparative study. Am J Bot 86:807–819. doi:10.2307/2656702

    Article  PubMed  Google Scholar 

  • Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P (2002) The origin of rhizomania resistance in sugar beet. Euphytica 127:383–397. doi:10.1023/A:1020310718166

    Article  CAS  Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Kollias C, Maniou P, Protonotarios VE, Siyiannis VF, Hawkesford MJ (2006) Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Ann Bot (Lond) 97:695–704. doi:10.1093/aob/mcl024

    Article  Google Scholar 

  • Caldwell MM, Manwaring JH, Jackson RB (1991) Exploitation of phosphate from fertile soil microsites by three Great Basin perennials when in competition. Funct Ecol 5:757–764. doi:10.2307/2389538

    Article  Google Scholar 

  • Choi EY, Kolesik P, McNeill A, Collins H, Zhang Q, Huynh BL, Graham R, Stangoulis J (2007) The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). Plant Cell Environ 30:984–993. doi:10.1111/j.1365-3040.2007.01693.x

    Article  PubMed  CAS  Google Scholar 

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201. doi:10.1007/s001220051184

    Article  CAS  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782. doi:10.1080/01904169209364361

    Article  Google Scholar 

  • Eshel A, Waisel Y (1996) Multiform and multifunction of various constituents of one root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker Inc., New York, pp 175–192

    Google Scholar 

  • Fénart S, Arnaud JF, De Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077. doi:10.1007/s00122-008-0735-1

    Article  PubMed  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant response to nitrate. Annu Rev Plant Biol 53:203–224. doi:10.1146/annurev.arplant.53.100301.135256

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Watkinson AR, Webb DJ, Thomas TH (1999) Yield of sugar beet in relation to weather and nutrients. Agric For Meteorol 93:39–51. doi:10.1016/S0168-1923(98)00106-3

    Article  Google Scholar 

  • Freixes S, Thibaud MC, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Environ 25:1357–1366. doi:10.1046/j.1365-3040.2002.00912.x

    Article  CAS  Google Scholar 

  • Frese L, Desprez B, Ziegler D (2001) Potential of genetic resources and breeding strategies for base-broadening in Beta. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. IPGRI/FAO, Rome, pp 295–309

    Google Scholar 

  • Furini A, Wunder J (2004) Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theor Appl Genet 108:197–208. doi:10.1007/s00122-003-1439-1

    Article  PubMed  CAS  Google Scholar 

  • Gallardo M, LE Jackson, Thompson RB (1996) Shoot and root physiological responses to localized zones of soil moisture in cultivated and wild lettuce (Lactuca spp.). Plant Cell Environ 19:1169–1178. doi:10.1111/j.1365-3040.1996.tb00432.x

    Article  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264. doi:10.1093/jxb/erh048

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Allard RW (1972) Microgeographical variation in allozyme fequencies in Avena barbata. Proc Natl Acad Sci USA 69:2100–2104. doi:10.1073/pnas.69.8.2100

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Holden LR (1979) The influence of microhabitat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evol Int J Org Evol 33:521–533. doi:10.2307/2407777

    Google Scholar 

  • Hedrick PW (2006) Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Evol Syst 37:67–93. doi:10.1146/annurev.ecolsys.37.091305.110132

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617. doi:10.1016/j.tplants.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  • Hoisington D (1992) Laboratory protocols: CIMMYT applied molecular genetics laboratory. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim Change 58:93–108. doi:10.1023/A:1023420102432

    Article  Google Scholar 

  • Joy N, Abraham Z, Soniya EV (2007) A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper. BMC Genet 8:42. doi:10.1186/1471-2156-8-42

    Article  PubMed  CAS  Google Scholar 

  • Kenter C, Hoffmann CM, Märländer B (2006) Effects of weather variables on sugar beet yield development (Beta vulgaris L.). Eur J Agron 24:62–69. doi:10.1016/j.eja.2005.05.001

    Article  Google Scholar 

  • Leiss KA, Müller-Schärer H (2001) Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. Am J Bot 88:1593–1599. doi:10.2307/3558403

    Article  Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79. doi:10.1023/A:1010381919003

    Article  PubMed  CAS  Google Scholar 

  • Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichý L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81. doi:10.1016/j.ppees.2006.07.001

    Article  Google Scholar 

  • Lynch JP, St.Clair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res 90:101–115. doi:10.1016/j.fcr.2004.07.008

    Article  Google Scholar 

  • Manschadi AM, Christopher J, de Voil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837. doi:10.1071/FP06055

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McGrath JM, Derrico CA, Yu Y (1999) Genetic diversity in selected, historical US sugarbeet germplasm and Beta vulgaris ssp. maritima. Theor Appl Genet 98:968–976. doi:10.1007/s001220051157

    Article  Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol. 5: vegetables. Springer, Berlin, pp 191–207

    Google Scholar 

  • Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP (2003) Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct Plant Biol 30:973–985. doi:10.1071/FP03078

    Article  CAS  Google Scholar 

  • Ober ES, Luterbacher MC (2002) Genotypic variation for drought tolerance in Beta vulgaris. Ann Bot (Lond) 89:917–924. doi:10.1093/aob/mcf093

    Article  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113. doi:10.1146/annurev.arplant.58.032806.104006

    Article  PubMed  CAS  Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400. doi:10.1007/s10681-006-9209-1

    Article  CAS  Google Scholar 

  • Pigliucci M (2001) The ecology of phenotypic plasticity. In: Pigliucci M (ed) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins Press, Baltimore, pp 156–181

    Google Scholar 

  • Rana MK, Singh VP, Bhat KV (2005) Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genet Resour Crop Evol 52:989–997. doi:10.1007/s10722-003-6113-6

    Article  CAS  Google Scholar 

  • Reidenbach G, Horst WJ (1997) Nitrate-uptake capacity of different root zones of Zea mays (L.) in vitro and in situ. Plant Soil 196:295–300

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186. doi:10.1093/jxb/erl250

    Article  PubMed  CAS  Google Scholar 

  • Richards CM, Brownson M, Mitchell SE, Kresovich S, Panella L (2004) Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (Beta vulgaris). Mol Ecol Notes 4:243–245. doi:10.1111/j.1471-8286.2004.00630.x

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1 manual. Applied Biostatistics Inc., New York

    Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265. doi:10.1007/BF00010478

    Article  CAS  Google Scholar 

  • Saccomani M, Cacco G, Ferrari G (1981) Efficiency of the first steps of sulfate utilization by maize hybrids in relation to their productivity. Physiol Plant 53:101–104. doi:10.1111/j.1399-3054.1981.tb04117.x

    Article  CAS  Google Scholar 

  • Shaw B, Thomas TH, Cooke DT (2002) Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul 37:77–83. doi:10.1023/A:1020381513976

    Article  CAS  Google Scholar 

  • Slatkin M (1973) Gene flow and selection in a cline. Genetics 75:733–756

    PubMed  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Sorgonà A, Abenavoli MR, Gringeri PG, Cacco G (2007) Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels. Ann Bot (Lond) 100:1287–1296. doi:10.1093/aob/mcm207

    Article  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martínez-Gómez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156:327–344. doi:10.1007/s10681-007-9382-x

    Article  CAS  Google Scholar 

  • Sreekumar VB, Binoy AM, George ST (2007) Genetic and morphological variation in breadfruit (Artocarpus altilis Park. Fosberg) in the Western Ghats of India using AFLP markers. Genet Resour Crop Evol 54:1659–1665. doi:10.1007/s10722-007-9282-x

    Article  CAS  Google Scholar 

  • Stevanato P, De Biaggi M, Skaracis GN, Colombo M, Mandolino G, Biancardi E (2001) The sea beet (Beta vulgaris L. ssp. maritima) of the Adriatic coast as source of resistance for sugar beet. Sugar Tech 3:77–82

    Article  Google Scholar 

  • Stevanato P, Saccomani M, Bertaggia M, Bottacin A, Cagnin M, De Biaggi M, Biancardi E (2004) Nutrient uptake traits related to sugarbeet yield. J Sugar Beet Res 41:89–99

    Google Scholar 

  • Sullivan WM, Jiang Z, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci 40:765–772

    Article  Google Scholar 

  • Utz HF (1995) PLABSTAT-ein computerprogramm zur statistischen analyse von pflanzenzüchterischen experimenten. Version 2M. Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik. Universität Hohenheim, Stuttgart, Germany

    Google Scholar 

  • Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil 255:157–167. doi:10.1023/A:1026123129575

    Article  CAS  Google Scholar 

  • Van Geyt JPC, Lange W, Oleo M, De Bock TSM (1990) Natural variation within the genus Beta and its possible use for breeding sugar beet: a review. Euphytica 49:57–76. doi:10.1007/BF00024131

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398. doi:10.1038/nprot.2007.175

    Article  PubMed  CAS  Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot (Lond) 100:991–998. doi:10.1093/aob/mcm180

    Article  Google Scholar 

  • Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol 89:972–983. doi:10.1111/j.1365-2745.2001.00618.x

    Article  Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958. doi:10.1104/pp.103.029306

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Grissom JE, McKeand SE, O’Malley DM (2004) Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings. BMC Ecol 4:14. doi:10.1186/1472-6785-4-14

    Article  PubMed  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695. doi:10.1007/s00122-005-2051-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Veneto Region through the Biotech Action II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Stevanato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccomani, M., Stevanato, P., Trebbi, D. et al. Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 169, 19–29 (2009). https://doi.org/10.1007/s10681-009-9888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9888-5

Keywords

Navigation