Skip to main content
Log in

Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Low temperature is a serious abiotic stress affecting rice production in subtropical and temperate areas. In this study, cold tolerance of rice at the germination and seedling stages were evaluated using one recombinant inbred line (RIL) population derived from a cross between Daguandao (japonica), with highly cold-tolerant at the seedling stage, and IR28 (indica), with more cold-tolerant at the germination stage, and the quantitative trait loci (QTL) mapping was conducted using the multiple interval mapping (MIM) approach. Continuous segregation in low temperature germinability (LTG) and cold tolerance at the seedling stage (CTS) were observed among the RIL populations. Most RILs were moderately susceptible or tolerant at the germination stage, but were susceptible at the seedling stage. No significant relationship was found in cold tolerance between the germination and seedling stages. A total of seven QTLs were identified with limit of detection (LOD) >3.0 on chromosomes 3, 8, 11 and 12, and the amount of variation (R 2) explained by each QTL ranged from 5.5 to 22.4%. The rice LTG might be regulated by two minor QTLs, with the CTS controlled by one major QTL [qCTS8.1 (LOD = 16.1, R 2 = 22.4%)] and several minor loci. Among these loci, one simultaneously controls LTG (qLTG11.1) and CTS (qCTS11.1). Several cold-tolerance-related QTLs identified in previous studies were found to be near the QTLs detected here, and three QTLs are novel alleles. The alleles from Daguandao at six QTLs increased cold tolerance and could be good sources of genes for cold tolerance. In addition, only one digenic interaction was detected for CTS, with a R 2 value of 6.4%. Those major or minor QTLs could be used to significantly improve cold tolerance by marker-assisted selection (MAS) in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez R, Valbuena L, Calvo L (2007) Effect of high temperatures on seed germination and seedling survival in three pine species (Pinus pinaster, P. sylvestris and P. nigra). Intl J Wildl Fire 16:63–70

    Article  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 392:2579–2585

    Article  Google Scholar 

  • Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  PubMed  CAS  Google Scholar 

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breeding 20:349–358

    Article  CAS  Google Scholar 

  • Baruah AR, Ishigo-Oka N, Adachi M, Oguma Y, Tokizono Y, Onishi K, Sano Y (2009) Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica 165:459–470

    Article  Google Scholar 

  • Bedi S, Basra AS (1993) Chilling injury in germinating seeds: basic mechanisms and agricultural implications. Seed Sci Res 3:219–229

    Article  Google Scholar 

  • Bramlage WJ, Leopold AC, Specht JE (1979) Imbibitional chilling sensitivity among soybean cultivars. Crop Sci 19:811–814

    Article  Google Scholar 

  • Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175

    Article  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 3:963–971

    Google Scholar 

  • Dellaporta SL, Wood T, Hicks TB (1983) A plant DNA mini preparation: version II. Plant Mol Bio Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dias PM, Brunel-Muguet S, Dürr C, Huguet T, Demilly D, Wagner MH, eulat-Merah TB (2011) QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula. Theor Appl Genet 122:429–444

    Article  PubMed  Google Scholar 

  • Edelstein M, Kigel J, Nerson H (1991) Relationships among germination, emergence and seedling development of muskmelon at low temperature. Sci Hortic 47:51–58

    Article  Google Scholar 

  • Foolad MR, Lin GY (2001) Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica 122:105–111

    Article  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  PubMed  CAS  Google Scholar 

  • Fujino K (2004) A major gene for low temperature germinability in rice (Oryza sativa L.). Euphytica 136:63–68

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin S, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    Article  PubMed  CAS  Google Scholar 

  • Goode LK, Allen MF (2009) Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae). Plant Ecol 204:179–188

    Article  Google Scholar 

  • Ichie T, Ninomiya I, Ogino K (2001) Utilization of seed reserves during germination and early seedling. J Trop Ecol 17:371–378

    Article  Google Scholar 

  • Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H (2009) A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet 118:1477–1488

    Article  PubMed  Google Scholar 

  • Jiang L, Liu SJ, Hou MY, Tang JY, Chen LM, Zhai HQ, Wan JM (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crop Res 98:68–75

    Article  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284:45–54

    Article  PubMed  CAS  Google Scholar 

  • Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y (2007) A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 115:593–600

    Article  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Lou QJ, Chen L, Sun ZX, Xing YZ, Li J, Xu XY, Mei HW, Luo LJ (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • McCouch SR, CGSNL (Committee on Gene Symbolization, Nomenclature, Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2001) Mapping quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Breed Sci 51:293–299

    Article  CAS  Google Scholar 

  • Nakagahra M, Okuno K, Vaughan D (1997) Rice genetic resources: history, conservation, investigative characterization and use in Japan. Plant Mol Biol 35:69–77

    Article  PubMed  CAS  Google Scholar 

  • Nykiforuk CL, Johnson-Flanagan AM (1999) Storage reserve mobilization during low temperature germination and early seedling growth in Brassica napus. Plant Physiol Biochem 37:939–947

    Article  CAS  Google Scholar 

  • Rodiño AP, Lema M, Pérez-Barbeito M, Santalla M, De Ron AM (2007) Assessment of runner bean (Phaseolus coccineus L.) germplasm for tolerance to low temperature during early seedling growth. Euphytica 155:63–70

    Article  Google Scholar 

  • Sanguinetti CJ, Neto ED, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    PubMed  CAS  Google Scholar 

  • Smallwood M, Bowles DJ (2002) Plants in a cold climate. Phil Trans R Soc Lond B 357:831–847

    Article  CAS  Google Scholar 

  • Stewart CR, Martin BA, Redding L, Cerwick S (1990) Seedling growth, mitochondrial characteristics and alternative respiratory capacity of corn genotypes differing in cold tolerance. Plant Physiol 92:761–766

    Article  PubMed  CAS  Google Scholar 

  • Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995

    Article  PubMed  CAS  Google Scholar 

  • Thompson K, Grime JP, Mason G (1977) Seed germination in response to diurnal fluctuations of temperature. Nature 267:147–149

    Article  PubMed  CAS  Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wang FH, Zhang HS (2010) Quantitative trait loci analysis for rice seed vigor during the germination stage. J Zhejiang Univ Sci B 11:958–964

    Article  PubMed  Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wu YY, Zhang HS (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178:297–307

    Article  Google Scholar 

  • Zhang ZH, Li S, Wei L, Wei C, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci 168:527–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31000748), the Natural Science Foundation of Jiangsu Province (Grant No. BK2010452). We thank reviewers for the careful reading of the manuscript and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfei Wang or Hongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, F., Zhou, R. et al. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181, 405–413 (2011). https://doi.org/10.1007/s10681-011-0469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0469-z

Keywords

Navigation