Skip to main content
Log in

Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In a previous study a genetic map had been developed using a RIL population derived from a cross between the Pisum sativum ssp. syriacum accession P665 and the P. sativum ssp. sativum cv. Messire. This population segregated for several agricultural important traits and was successfully used to identify QTLs (Quantitative Trait Loci) controlling resistance to Mycosphaerella pinodes and Orobanche crenata, earliness, root length and aerial biomass. However, this map contained only a few markers in common with the international pea consensus map, hampering comparison with other pea maps. The objective of this study was to incorporate a set of common transferable and reproducible markers into the P665 × Messire map to favour comparative mapping and QTL validation. Seventy-eight out of the 248 SSRs assayed resulted polymorphic in the parental lines. Thirty-eight of them, uniformly distributed all over the genome, were genotyped in the whole population and included in the map. This SSR enriched map allowed identification of six new QTLs (three for resistance to M. pinodes, two for resistance to broomrape and one for root length). Inclusion of the SSRs confirmed the homology of some of the QTLs identified in the population P665 × Messire with other QTLs associated with related traits in different pea genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Blixt S (1974) The pea. In: King RC (ed) Handbook of genetics. Plenium Press, New York, pp 181–221

    Google Scholar 

  • Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc D (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 44:468–781

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 198:963–971

    Google Scholar 

  • Clulow SA, Lewis BG, Matthews P (1991) A pathotype classification for Mycosphaerella pinodes. Phytopathology 131:322–332

    Article  Google Scholar 

  • FAO (2010): http://faostat.fao.org/. Accessed 15 Jan 2010

  • Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breeding 124:313–315

    Article  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breed 25:259–272

    Article  CAS  Google Scholar 

  • Köpje U, Nemecek T (2010) Ecological services of faba bean. Field Crops Res 115:217–233

    Article  Google Scholar 

  • Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative trait using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abramson J, Barlow A, Dali MJ, Lincoln DE, Newburg L (1987) MAPMAKER: an interactive computer program for constructing genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lawyer SA (1984) Diseases caused by Ascochyta spp. In: Hargedon DJ (ed) Compendium of pea diseases. APS Press, St Paul, pp 11–15

    Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  PubMed  CAS  Google Scholar 

  • Roger C, Tivoli R (1996) Spatio temporal development of pynidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathol 45:518–528

    Article  Google Scholar 

  • Rubiales D, Fondevilla S (2010) Resistance of cool season food legumes to Ascochyta blight. Field Veg Crop Res 47:439–442

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003a) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872

    Article  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Joel DM, Alcántara C, Sillero JC (2003b) Characterization of resistance in chickpea to crenata broomrape (Orobanche crenata). Weed Sci 51:702–707

    Article  CAS  Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005) Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Genet Resour Crop Evol 52:853–861

    Article  Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Mora A, Barilli E, Sillero JC, Fondevilla S (2009a) Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. Czech J Genet Plant Breed 45:135–142

    Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Castillejo MA, Sillero J, Rispail N, Fondevilla S (2009b) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553–559

    Article  PubMed  CAS  Google Scholar 

  • Wallen VR (1965) Field evaluation of the importance of the Ascochyta complex of peas. Can J Plant Sci 45:27–33

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Gaffney P, Zeng Z-B (2005) Windows QTL cartographer version 2.5. Statistical genetics. North Carolina State University, Raleigh

    Google Scholar 

  • Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta bligt resistance in pea. Aust J Exp Agr 38:469–479

    Article  Google Scholar 

  • Xue AG, Warkentin TD, Kenaschuk EO (1997) Effect of timings of inoculation with Mycosphaerella pinodes on yield and seed infection on field pea. Can J Plant Sci 77:685–689

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Y, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support by projects AGL2008-01239 and RTA2007-00030 is acknowledged. SF was funded by Juan de la Cierva Program of the Spanish MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Fondevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fondevilla, S., Almeida, N.F., Satovic, Z. et al. Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182, 43–52 (2011). https://doi.org/10.1007/s10681-011-0460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0460-8

Keywords

Navigation