Skip to main content
Log in

Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A new wheat-Thinopyrum substitution line AS1677, developed from a cross between wheat line ML-13 and wheat-Thinopyrum intermedium ssp. trichophorum partial amphiploid TE-3, was characterized by fluorescence in situ hybridization (FISH), sequential Giemsa-C banding, genomic in situ hybridization (GISH), seed storage protein electrophoresis, molecular marker analysis and disease resistance screening. Sequential Giemsa-C banding and GISH using Pseudoroegneria spicata genomic DNA as probe indicated that a pair of St-chromosomes with strong terminal bands were introduced into AS1677. FISH using pTa71 as a probe gave strong hybridization signals at the nuclear organization region and in the distal region of the short arms of the St chromosome. Moreover, FISH using the repetitive sequence pAs1 revealed that a pair of wheat 1D chromosomes was absent in accession AS1677. Seed storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that AS1677 lacked the gliadin and glutenin bands encoded by Gli-D1 and Glu-D1, further confirming the absence of chromosome 1D. The introduced St chromosome pair belonging to homoeologous group 1 was identified by newly produced genome specific markers. AS1677 is a new 1St (1D) substitution line. When inoculated with stripe rust and powdery mildew isolates, AS1677 expressed stripe rust resistance possibly derived from its Thinopyrum parent. AS1677 can be used as a donor source for introducing novel disease resistance genes to wheat in breeding programs aided by molecular and cytogenetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao Y, Lia X, Liu S, Cui F, Wang H (2009) Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res 126:390–395

    Article  CAS  PubMed  Google Scholar 

  • Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 141:580–586

    Article  Google Scholar 

  • Chen Q, Conner RL, Li HJ, Sun SC, Ahmad F, Laroche A, Graf RJ (2003) Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat—Thinopyrum intermedium partial amphiploids. Genome 46:135–145

    Article  PubMed  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement, vol 16. Plenum Press, New York, pp 209–279

    Google Scholar 

  • Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987) An assessment of the homoeology of six Agropyron intermedium chromosomes added to wheat. Genet Res Camb 50:91–97

    Article  CAS  Google Scholar 

  • Friebe B, Mukai Y, Gill BS, Cauderon Y (1992a) C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat—Ag intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905

    Article  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992b) Characterization of rust-resistant wheat—Ag. intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    CAS  Google Scholar 

  • Friebe B, Qi LL, Wilson DL, Chang ZJ, Seifers DL, Martin TJ, Fritz AK, Gill BS (2009) Wheat—Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 49:1221–1226

    Article  CAS  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  Google Scholar 

  • Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    Article  CAS  Google Scholar 

  • Gill BS (1987) Chromosome banding methods standard chromosome nomenclature and applications in cytogenetic analysis. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. American Society of Agronomy, Madison, WI, USA, pp 243–254

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat—Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • He R, Chang Z, Yang Z, Liu Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of a powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa G, Yonemaru J, Saito M, Nakamura T (2007) PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8:135

    Article  PubMed  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Wang J, Zheng Q, Li JM, Zhang XQ, Zhang AM (2009) A powdery mildew resistant line with introgression of Agropyron elongatum chromatin. Cereal Res Commun 37:217–225

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS (1993) Sequential chromosome banding and in situ hybridization analysis. Genome 36:792–795

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Banks PM, Lagudah ES, Appels R, Chen X, Xin ZY, Ohm HW, McIntosh RA (1995) Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Li DY, Ru YY, Zhang XY (2004) Chromosomal distribution of the 18S–5.8S–26S rDNA loci and heterogeneity of nuclear ITS regions in Thinopyrum intermedium (Poaceae: Triticeae). Acta Bot Sin 46:1234–1241

    CAS  Google Scholar 

  • Li XM, Lee BS, Mammadov AC, Koo BC, Mott IW, Wang RR-C (2007) CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome 50:400–411

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yang ZJ, Jia JQ, Li GR, Zhou JP, Ren ZL (2009) Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun 37:363–372

    Article  CAS  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T.tauschii). Euphytica 83:87–93

    Article  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E et al Proc 11th int wheat genet symp (on CD). University of Sydney Press, Australia

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Ohm HW, Anderson JM, Sharma HC, Ayala L, Thompson N, Uphaus JJ (2005) Registration of yellow dwarf virus resistant wheat germplasm line P961341. Crop Sci 45:805–806

    Article  Google Scholar 

  • Rayburn AL, Gill BS (1986a) Isolation of a D genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986b) Molecular identification of the D-genome of wheat. J Hered 77:253–255

    CAS  Google Scholar 

  • Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Article  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Shi DL, Fu TH, Ren ZL (2008) Development and identification of wheat-Thinopyrum intermedium alien disomic addition line with stripe rust resistance. Southwest China J Agric Sci 21:1308–1312

    Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Article  CAS  Google Scholar 

  • Tang Z, Shu HL, Chen JY (2006) Genetic analysis of a new germplasm of wheat resistance to stripe rust. J Southwest Agric Univ (Nat Sci) 28:54–57

    Google Scholar 

  • Van Deynze AE, Sorrells ME, Park WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping in grass genera. Theor Appl Genet 97:356–369

    Article  Google Scholar 

  • Wang RRC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1994) Genomic symbols in the Triticeae. In: Wang RRC, Jensen KB, Jaussi C (eds) Proc 2nd int Triticeae symp. Utah State University Press, Logan, UT, USA, pp 29–34

    Google Scholar 

  • Yang ZJ, Li GR, Jiang HR, Ren ZL (2001) Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317–321

    Article  Google Scholar 

  • Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149:11–17

    Article  CAS  Google Scholar 

  • Zhang HB, Dvorák J (1990) Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopymm chromatin in wheat genomes. Genome 33:283–293

    CAS  Google Scholar 

  • Zhang ZY, Xin ZY, Ma YZ, Chen X, Xu QF, Lin ZS (1999) Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci China C 42:663–668

    Article  CAS  Google Scholar 

  • Zhang P, Friebe B, Gill B, Park R (2007) Cytogenetics in the age of molecular genetics. Aust J Agric Res 58:498–506

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (no. 30170502, 30871518), Chinese Ministry of Education (NCET-06-0810), and Young Scholars Foundation from the Science and Technology Committee of Sichuan (2008-31-371) for financial support. We particularly thank Dr. W. Jon Raupp, Kansas State University, Manhattan, Kansas, for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Jun Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, LJ., Li, GR., Zeng, ZX. et al. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 177, 169–177 (2011). https://doi.org/10.1007/s10681-010-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0216-x

Keywords

Navigation