Skip to main content
Log in

Identification of QTLs for alpha acid content and yield in hop (Humulus Lupulus L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers were applied to a segregation population of 111 genotypes derived from a pseudo-testcross of hop (Humulus lupulus L.) in order to detect quantitative trait loci (QTLs) for alpha-acid content and yield traits. A total of 199 markers (150 AFLPs, 43 SSRs, one hypothetical sex marker, five chs genes) were located on the 20 linkage groups (LGs) of the maternal and paternal maps, covering 706 and 616 cM, respectively. Due to the presence of 16 common biparental SSR markers, homology of seven LGs between parental maps could be inferred. The progeny segregated quantitatively for alpha-acid content and yield determined in the years from 2002–2006. A total of 13 putative QTLs for alpha acid content, 13 for dry cone weight and 18 for harvest index were identified on the two maps across years. Possible homologies between the detected QTLs on the two maps as well as in different years were established for all three traits. The most promising QTL for alpha acid content was identified on LG03 flanked by two AFLP markers (E-ACC-M-CAA103F*/P-ACA-M-CAC412F). From 13.80 to 36.64% higher content of alpha acids than the averages obtained in different years was observed in plants having both flanking markers. The candidate region for further characterization of QTLs for yield traits was located on LG01 where the putative QTLs for harvest index were detected on both maps in each of the 5 years. The QTLs identified represent an important improvement in alpha acids MAS and the first step towards marker-assisted breeding for hop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Analytica EBC/European brewery convention (1998) Nuernberg, EBC Analysis Committe–Nuernberg, Carl, Hans, Getränke–Fadverl. Grundwerk: Section 7

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107:857–863. doi:10.1007/s00122-003-1218-z

    Article  PubMed  CAS  Google Scholar 

  • Borghi B, Accerbi M, Corbellini M (1998) Responce to early generation selection for grain yield and harvest index in bread wheat (T. aestivum L.). Plant Breed 117:13–18. doi:10.1111/j.1439-0523.1998.tb01440.x

    Article  Google Scholar 

  • Castro AJ, Chen X, Hayes PM, Knapp SJ, Line RF, Toojinda T, Vivar H (2002) Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci 42:1701–1708

    Article  CAS  Google Scholar 

  • Castro AJ, Chen X, Hayes PM, Johnston M (2003a) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci 43:651–659

    CAS  Google Scholar 

  • Castro AJ, Chen X, Corey A, Filichkina T, Hayes PM, Munt C, Richardson K, Sandoval-Islas S, Vivar H (2003b) Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on adult plant resistance. Crop Sci 43:2234–2239

    Google Scholar 

  • Cerenak A, Satovic Z, Javornik B (2006) Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome 49:485–494. doi:10.1139/G06-007

    Article  PubMed  CAS  Google Scholar 

  • Conneally PM, Edwards JH, Kidd KK, Lalouel JM, Morton NE (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359. doi:10.1159/000132186

    Article  PubMed  CAS  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664. doi:10.1007/s00122-005-2016-6

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Hadonou AM, Walden R, Darby P (2004) Isolation and characterization of polymorphic microsatellites for assessment of genetic variation of hops (Humulus lupulus L.). Mol Ecol Notes 4(2):280–282. doi:10.1111/j.1471-8286.2004.00641.x

    Article  CAS  Google Scholar 

  • Jakše J, Javornik B (2001) High throughput isolation of microsatellites in hop (Humulus lupulus L.). Plant Mol Biol Rep 19:217–226. doi:10.1007/BF02772893

    Article  Google Scholar 

  • Jakše J, Kindlhofer K, Javornik B (2001) Assesment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome 44:773–782. doi:10.1139/gen-44-5-773

    Article  PubMed  Google Scholar 

  • Jakše J, Luthar Z, Javornik B (2008) New polymorphic dinucleotide and trinucleotide microsatellite loci for hop Humulus lupulus L. Mol Ecol Resour 8(4):769–772. doi:10.1111/j.1755-0998.2007.02053.x

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Knott SA, Neale DB, Sewell MH, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820. doi:10.1007/s001220050482

    Article  Google Scholar 

  • Koie K, Inaba A, Okada Y, Kaneko T, Ito K (2005) Construction of the genetic linkage map and QTL analysis on hop (Humulus lupulus L.). In: Hummer KE, Henning JA (eds) Proceedings of the 1st international humulus symposium, Corvallis, Oregon, 1–7 August 2004. Acta Hort. 668, ISHS 2005:59–67

  • Krofta K, Nesvadba V (2005) Utilisation of chemotaxonomy of male hops for breeding. In: Seigner E (ed) Proceedings of the scientific commission, vol 24. 20–25 February, George, South Africa

  • Kump B, Javornik B (1996) Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci 114:149–158. doi:10.1016/0168-9452(95)04321-7

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lercetau E, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458. doi:10.1023/A:1026548716320

    Article  Google Scholar 

  • Matoušek J, Novák P, Břiza J, Patzak J, Niedermeierová H (2002) Cloning and characterisation of chs-specific DNA and cDNA sequences from hop (Humulus lupulus L.). Plant Sci 162:1007–1018. doi:10.1016/S0168-9452(02)00050-X

    Article  Google Scholar 

  • Matoušek J, Vrba L, Novak P, Patzak J, De Keukeleire J, Škopek J, Heyerick A, Roldan-Ruiz I, De Keukeleire D (2005) Cloning and molecular analysis of the regulatory factor HiMyb1 in hop (Humulus lupulus L.) and the potential of hop to produce bioactive prenylated flavonoids. J Agric Food Chem 53(12):4793–4798. doi:10.1021/jf050175y

    Article  PubMed  CAS  Google Scholar 

  • Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200. doi:10.1105/tpc.107.055178

    Article  PubMed  CAS  Google Scholar 

  • Novak P, Matoušek J, Briza J (2003) Valerophenone synthase-like chalcone synthase homologues in Humulus lupulus. Biol Plant 46:375–381. doi:10.1023/A:1024326102694

    Article  CAS  Google Scholar 

  • Okada Y, Ito K (2001) Cloning and analysis of valerophenon synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.). Biosci Biotechnol Biochem 65:150–155. doi:10.1271/bbb.65.150

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Sano Y, Kaneko T, Abe I, Noguchi H, Ito K (2004) Enzymatic reactions by five chalcone synthase homologues from hop (Humulus lupulus L.). Biosci Biotechnol Biochem 68:1142–1145. doi:10.1271/bbb.68.1142

    Article  PubMed  CAS  Google Scholar 

  • Paniego NB, Zuurbier KWM, Fung SY, van der Heijden R, Scheffer JJC, Verpoorte R (1999) Phlorisovalerophenone synthase, a novel polyketide synthase from hop (Humulus lupulus L.) cones. Eur J Biochem 262:612–616. doi:10.1046/j.1432-1327.1999.00444.x

    Article  PubMed  CAS  Google Scholar 

  • Rae AM, Pinel MPC, Bastien C, Sabatti M, Street NR, Tucker J, Dixon C, Marron N, Dillen SY, Taylor G (2008) QTL for yield in bioenergy Populus: identifying GxE interactions from growth at three contrasting sites. Tree Genet Genomes 4:97–112. doi:10.1007/s11295-007-0091-3

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  PubMed  CAS  Google Scholar 

  • Seefelder S, Ehrmaier H, Schweizer G, Seigner E (2000) Male and female genetic linkage map of hops, Humulus lupulus. Plant Breed 119:249–255. doi:10.1046/j.1439-0523.2000.00469.x

    Article  CAS  Google Scholar 

  • Seefelder S, Lutz A, Seigner E (2005) Mapping of a powdery mildew resistance gene in hop (Humulus lupulus L.). In: Seigner E (ed) Proceedings of the scientific commission, I.H.G.C., 20–25 February, George, South Africa, By Bayerische Landesanstalt für Bodenkultur und Pflanzenbau, Hüll, Germany, pp 31–35

  • Štajner N, Jakše J, Kozjak P, Javornik B (2004) The isolation and characterisation of microsatellites in hop (Humulus lupulus L.). Plant Sci 168:213–221. doi:10.1016/j.plantsci.2004.07.031

    Article  CAS  Google Scholar 

  • Stajner N, Satovic Z, Cerenak A, Javornik B (2008) Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites. Euphytica 161(1–2):301. doi:10.1007/s10681-007-9429-z

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepard C (2002) MapQTL Version 4.0, Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

    Google Scholar 

  • Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao P, Dixon RA (2008) Terpene biosynthesis in glandular trichomes of hop (Humulus lupulus L). Plant Physiol 148:1254–1266. doi:10.1104/pp.108.125187

    Article  PubMed  CAS  Google Scholar 

  • Wu RL, Han YF, Hu JJ, Fang JJ, Li L, Li ML, Zeng ZB (2000) An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl Genet 100:1249–1256. doi:10.1007/s001220051431

    Article  CAS  Google Scholar 

  • Yin TM, Wang XR, Andersson B, Lercetau-Kohler E (2003) Nearly complete genetic maps of Pinus sylvestris L. (Scots pine) constructed by AFLP marker analysis in a full-sib family. Theor Appl Genet 106:1075–1083

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, contract no. P4-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreja Cerenak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerenak, A., Satovic, Z., Jakse, J. et al. Identification of QTLs for alpha acid content and yield in hop (Humulus Lupulus L.). Euphytica 170, 141–154 (2009). https://doi.org/10.1007/s10681-009-9920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9920-9

Keywords

Navigation