Skip to main content
Log in

Genetic mapping and QTL analysis of agronomic traits in Indian Mucuna pruriens using an intraspecific F2 population

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mucuna pruriens is a well-recognized agricultural and horticultural crop with important medicinal use. However, antinutritional factors in seed and adverse morphological characters have negatively affected its cultivation. To elucidate the genetic control of agronomic traits, an intraspecific genetic linkage map of Indian M. pruriens has been developed based on amplified fragment length polymorphism (AFLP) markers using 200 F 2 progenies derived from a cross between wild and cultivated genotypes. The resulting linkage map comprised 129 AFLP markers dispersed over 13 linkage groups spanning a total distance of 618.88 cM with an average marker interval of 4.79 cM. For the first time, three QTLs explaining about 6.05–14.77% of the corresponding total phenotypic variation for three quantitative (seed) traits and, eight QTLs explaining about 25.96% of the corresponding total phenotypic variation for three qualitative traits have been detected on four linkage groups. The map presented here will pave a way for mapping of genes/QTLs for the important agronomic and horticultural traits contrasting between the parents used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ahmad N. S. 2012 Genetic analysis of plant morphology in Bambara groundnut (Vigna subterranea (L.) Verdc.). BSc Thesis. University of Nottingham, Nottinghanshire, UK.

  • Bairiganjan G. C. and Patnaik S. N. 1989 Chromosome evolution in Fabaceae. Cytologia 54, 51–64.

    Article  Google Scholar 

  • Brainerd E. 1924 Some natural violet hybrids of North America. Vermont Agr. Exp. Sta. Bull. No. 239.

  • Bressani R. 2002 Factors influencing nutritive value in food grain legumes: Mucunacompared to other grain legumes. In Food and feed from Mucuna: current uses and the way forward (ed. B. M. Flores, M. Eilitta, R. Myhrman, L. B. Carew and R. J. Carsky) pp. 164–188, Workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa Honduras, USA.

  • Bonifácio E. M., Fonsêca A., Almeida C., Dos Santos K. G. B. and Pedrosa-Harand A. 2012 Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor. Appl. Genet. 124, 1513–1520.

    Article  PubMed  Google Scholar 

  • Buckles D. 1995 Velvetbean: a “new” plant with a history. Econ. Bot. 49, 13–25.

    Article  Google Scholar 

  • Capo-Chichi L. J. A., Weaver D. B. and Morton C. M. 2001 AFLP assessment of genetic variability among Velvetbean (Mucuna sp.) accessions. Theor. Appl. Genet. 103, 1180–1188.

    Article  CAS  Google Scholar 

  • Capo-Chichi L. J. A., Weaver D. B. and Morton C. M. 2004 An intraspecific genetic map of velvetbean (Mucuna sp.) based on AFLP markers. Theor. Appl. Genet. 108, 814–821.

    Article  CAS  PubMed  Google Scholar 

  • Carsky R. J. and Ndikawa R. 1998 Identification of cover crops for the semi-arid savanna zone of west Africa. In Cover crops in west Africa—contributing to sustainable agriculture (ed. D. Buckles, A. Eteka, M. Osiname, M. Galiba and G. Galiano) pp. 179–187, IDRC, IITA, Sasakawa Global 2000, Otawa, Canada, Ibadan, Nigeria, Cotonou, Benin.

  • Darlington C. D. and Mather K. 1949 The elements of genetics. Allen & Unwin, London, UK.

  • Doyle J. J. and Doyle J. 1990 Isolation of DNA from plant tissue. Focus 12, 13–15.

    Google Scholar 

  • Eilittä M., Bressani R., Carew L. B., Carsky R. J., Flores M., Gilbert R. et al. 2002 Mucuna as a food and feed crop: an overview. In Food and feed from Mucuna: current uses and the way forward, (ed. B. M. Flores, M. Eilittä, R. Myhrman, L. B. Carew and R. J. Carsky) pp 18–47, workshop CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras USA.

  • Fang X., Wu W. and Tang J. 2000 DNA marker-assisted breeding in crops. Scientific Press, Beijing, China.

  • Fujii Y., Shibuya T. and Yasuda T. 1991 L-3,4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L.) DC. var. utilis. Agric. Biol. Chem. 55, 617–618.

    CAS  Google Scholar 

  • Haldane J. B. S. 1919 The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8, 299–309.

    Article  Google Scholar 

  • Han O. K., Kaga A., Isemura T., Wang X. W., Tomooka N. and Vaughan D. A. 2005 A genetic linkage map for azuki bean (Vigna angularis (Wild.) Ohwi & Ohashi). Theor. Appl. Genet. 111, 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  • Haq N. 1983 New food legume crops for the tropics, In Better crops for the food (ed. J. Nugent and M. O. Cormor) pp. 144–160. Pitman Books, London (Cuba Foundation Symposium, 97), UK.

  • Hayashi M., Miyahara A., Sato S., Kato T., Yoshikawa M., Taketa M. et al. 2001 Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F 2 population. DNA Res. 8, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Iwata H. and Ninomiya S. 2004 Ant colony optimization for linkage grouping and locus ordering in genome mapping. Plant and Animal Genome XII, SanDiego, USA.

  • Jorge M. A., Eilitta M., Proud F. J., Maasdorp B. V., Beksissa H., Sarial A. K. and Hanson 2007 Mucuna species: recent advances in application of biotechnology. Fruit Veg. Cer. Sci. Biotech. 2, 80–94.

    Google Scholar 

  • Julier B., Flajoulot S., Barre P., Cardinet G., Santoni S., Huguet T. and Huyghe H. 2003 Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 3, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavitha C. and Thangamani C. 2014 Amazing bean “Mucuna pruriens”—a comprehensive review. J. Med. Plants Res. 8, 138–143.

    Article  CAS  Google Scholar 

  • Kongjaimun A., Kaga A., Tomooka N., Somta P., Shimizu T., Shu Y. et al. 2012 An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. sub-sp. unguiculata Sesquipedalis group) and QTL analysis of pod length. Genome 55, 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Article  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. and Newburg L. 1987 MAPMAKER: an interactive computer package of constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Leelambika M., Mahesh S., Jaheer M. and Sathyanarayana N. 2010 Comparative evaluation of genetic diversity among Indian Mucuna species using morphometric, biochemical and molecular approaches. World J. Agric. Sci. 6, 568–578.

    CAS  Google Scholar 

  • Lotsy J. P. 1916 Evolution by means of hybridization. Martinees Nijhoff, The Hague, The Netherlands.

    Book  Google Scholar 

  • Padmesh P., Reji J. V., Jinish Dhar M. and Seeni D. 2006 Estimation of genetic diversity in varieties of M. pruriens using RAPD. Biol. Plant. 50, 367–372.

    Article  CAS  Google Scholar 

  • Plomion C., O’Malley D. M. and Durel C. E. 1995 Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor. Appl. Genet. 90, 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  • Sastrapradja S., Sastrapradja D., Aminah S. H., Lubis I. and Idris S. 1972 Comparative seedling morphology of Mucuna pruriens group. Ann. Bogoriendes. 5, 131–136.

    Google Scholar 

  • Sastry C. S. T. and Kavathekar Y. Y. 1990 Plants for reclamation of wastelands. Publications and Information Directorate, New Delhi, India.

  • Sathyanarayana N., Vikas P. B., Bharath Kumar T. N. and Rajesha R. 2010 RAPD markers for genetic characterization of Mucuna species. Ind. J. Genet. 70, 296–298.

    Google Scholar 

  • Sathyanarayana N., Leelambika M., Mahesh S. and Jaheer M. 2011 AFLP assessment of genetic diversity among Indian Mucuna accessions. Physiol. Mol. Biol. Plants 17, 171–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyanarayana N., Mahesh S., Jaheer M. and Leelambika M. 2012 Genetic diversity of wild and cultivated M. pruriens (L.). DC accessions analyzed using thirty morpho-agronomical characters. Trop. Subtrop. Agroecosyst. 15, 249–259.

    Google Scholar 

  • Siddhuraju P., Becker K. and Makkar H. P. 2000 Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens var. utilis. J. Agric. Food Chem. 48, 6048–6060.

    Article  CAS  PubMed  Google Scholar 

  • Staub J. E., Serquen F. C. and Gupta M. 1996 Genetic markers, map construction, and their application in plant breeding. Hort. Sci. 31, 729–740.

    CAS  Google Scholar 

  • Szabo N. J. and Tebbett I. R. 2002 The chemistry and toxicity of Mucuna species. In Food and feed from Mucuna: current uses and the way forward (ed. M. Flores, M. Eilittä, R. Myhrman, L. B. Carew, R. J. Carsky) pp. 120–141. Proceedings of an International Workshop, CIDICCO, CIEPCA, World Hunger Research Center, Tegucigalpa, Honduras, USA.

  • Sun X., Yang T., Hao J., Xiaoyan Z., Ford R., Jiang J. et al. 2014 SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties. Crop J., 170–174.

  • Tarawali G., Manyong V. M., Carsky R. J., Vissoh P. V., Osei-Bonsu P. and Galiba M. 1999 Adoption of improved fallows in west Africa: lessons from Mucuna and Stylo case studies. Agroforestry Syst. 47, 93–122.

    Article  Google Scholar 

  • Thoquet P., Ghérardi M., Journet E. -P., Kereszt A., Ané J. -M., Prosperi J. -M. and Hugust T. 2002 The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol. 2, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega U. and Frey K. J. 1980 Transgressive segregation in inter and intraspecific crosses of barley. Euphytica 2, 585–594.

    Article  Google Scholar 

  • Voorrips R. E. 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2012 Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

  • Xu Y. and Zhu L. 1994 Molecular quantitative genetics. Chinese Agricultural Press, Beijing, China.

    Google Scholar 

  • Yuste-Lisbona F. J., Santalla M., Capel C., García-Alcázar M., De La Fuente M., Capel J. et al. 2012 Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC Plant Biol. 12, 136.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Department of Science and Technology (DST) and Department of Biotechnology (DBT), Govt. of India for this project. NS thank Sikkim University, Gangtok and Sri Krishnadevaraya Educational Trust (Sri KET), Bangalore, India for the laboratory and field facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. SATHYANARAYANA.

Additional information

[Mahesh S., Leelambika M., Jaheer M., Anithakumari A. M. and Sathyanarayana N. 2016 Genetic mapping and QTL analysis of agronomic traits in Indian Mucuna pruriens using an intraspecific F2 population. J. Genet. 95, xx–xx]

MS and LM raised mapping population, carried out marker analysis and QTL mapping. MJ assisted in field and laboratory works. AAM reviewed the manuscript. NS conceptualized the work and obtained funding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAHESH, S., LEELAMBIKA, M., JAHEER, M. et al. Genetic mapping and QTL analysis of agronomic traits in Indian Mucuna pruriens using an intraspecific F2 population. J Genet 95, 35–44 (2016). https://doi.org/10.1007/s12041-015-0602-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0602-1

Keywords

Navigation