Skip to main content
Log in

Pricing and greening strategies in a dual-channel supply chain with cost and profit sharing contracts

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The expanding customer consciousness of ecological sustainability has motivated supply chain members to participate in green activities. In this paper, the coordination issue of a dual-channel supply chain is studied under consideration of the greening level of the items. The two-stage supply chain consists of a manufacturer and a retailer. The manufacturer is responsible for keeping the item’s greening level and sells the products through two channels (a) a direct online channel and (b) a traditional retail channel. Market demand depends on the selling price and greening level of the item. Furthermore, the pricing and greening strategies of the channel members are discussed under the centralized and decentralized scenarios. Compared to the centralized scenario, optimum pricing at the retail channel is higher in the decentralized scenario while the greening level of products is low. The outcomes exhibit that the profit of the supply chain in a decentralized scenario decreases compared to the centralized scenario. To enhance the supply chain profit, we have developed two coordinate mechanisms of the decentralized scenario with a cost-sharing contract and a profit-sharing contract. Our analysis shows that the profit-sharing contract can realize the coordination, but the cost-sharing contract cannot. A numerical example has been demonstrated to quantify the effectiveness of different contracts, and the model’s finding is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not Applicable.

References

  • Barari, S., Agarwal, G., Zhang, W. C., Mahanty, B., & Tiwari, M. (2012). A decision framework for the analysis of green supply chain contracts: An evolutionary game approach. Expert Systems with Applications, 39(3), 2965–2976.

    Article  Google Scholar 

  • Barman, A., Das, R., De, P. K. (2021a). Optimal pricing and greening decision in a manufacturer retailer dual-channel supply chain. Materials Today: Proceedings.

  • Barman, A., Das, R., & De, P. K. (2021b). An analysis of optimal pricing strategy and inventory scheduling policy for a non-instantaneous deteriorating item in a two-layer supply chain. Applied Intelligence, pp. 1–25.

  • Barman, A., Das, R., De, P. K., & Sana, S. S. (2021). Optimal pricing and greening strategy in a competitive green supply chain: Impact of government subsidy and tax policy. Sustainability, 13(16), 9178.

    Article  Google Scholar 

  • Basiri, Z., & Heydari, J. (2017). A mathematical model for green supply chain coordination with substitutable products. Journal of Cleaner Production, 145, 232–249.

    Article  Google Scholar 

  • Boronoos, M., Mousazadeh, M., & Torabi, S. A. (2021). A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design. Environment, Development and Sustainability, 23(3), 3368–3395.

    Article  Google Scholar 

  • Cattani, K., Gilland, W., Heese, H. S., & Swaminathan, J. (2006). Boiling frogs: Pricing strategies for a manufacturer adding a direct channel that competes with the traditional channel. Production and Operations Management, 15(1), 40–56.

    Article  Google Scholar 

  • Chen, T.-H. (2015). Effects of the pricing and cooperative advertising policies in a two-echelon dual-channel supply chain. Computers & Industrial Engineering, 87, 250–259.

    Article  Google Scholar 

  • Dan, B., Xu, G., & Liu, C. (2012). Pricing policies in a dual-channel supply chain with retail services. International Journal of Production Economics, 139(1), 312–320.

    Article  Google Scholar 

  • Das, R., Barman, A., & De, P. K. (2021a). Integration of pricing and inventory decisions of deteriorating item in a decentralized supply chain: a stackelberg-game approach. International Journal of System Assurance Engineering and Management, pp, 1–15.

  • Das, R., De, P. K., & Barman, A. (2021b). Pricing and ordering strategies in a two-echelon supply chain under price discount policy: a stackelberg game approach. Journal of Management Analytics, pp. 1–27.

  • De Giovanni, P. (2014). Environmental collaboration in a closed-loop supply chain with a reverse revenue sharing contract. Annals of Operations Research, 220(1), 135–157.

    Article  Google Scholar 

  • Dey, K., & Saha, S. (2018). Influence of procurement decisions in two-period green supply chain. Journal of Cleaner Production, 190, 388–402.

    Article  Google Scholar 

  • Ghadimi, P., Wang, C., & Lim, M. K. (2019). Sustainable supply chain modeling and analysis: Past debate, present problems and future challenges. Resources, Conservation and Recycling, 140, 72–84.

    Article  Google Scholar 

  • Ghosh, D., & Shah, J. (2012). A comparative analysis of greening policies across supply chain structures. International Journal of Production Economics, 135(2), 568–583.

    Article  Google Scholar 

  • Giri, B., Mondal, C., & Maiti, T. (2018). Analysing a closed-loop supply chain with selling price, warranty period and green sensitive consumer demand under revenue sharing contract. Journal of Cleaner Production, 190, 822–837.

    Article  Google Scholar 

  • Guo, S., Choi, T.-M., & Shen, B. (2020). Green product development under competition: A study of the fashion apparel industry. European Journal of Operational Research, 280(2), 523–538.

    Article  Google Scholar 

  • Haji, A., Afzalabadi, M., & Rasoul, R. (2018). Pricing and inventory decisions in a vendor managed inventory system with revenue sharing contract. Uncertain Supply Chain Management, 6(3), 299–320.

    Article  Google Scholar 

  • Hess, J. D., Chu, W., & Gerstner, E. (1996). Controlling product returns in direct marketing. Marketing Letters, 7(4), 307–317.

    Article  Google Scholar 

  • Heydari, J., Govindan, K., & Aslani, A. (2019). Pricing and greening decisions in a three-tier dual channel supply chain. International Journal of Production Economics, 217, 185–196.

    Article  Google Scholar 

  • Hong, Z., Wang, H., & Gong, Y. (2019). Green product design considering functional-product reference. International Journal of Production Economics, 210, 155–168.

    Article  Google Scholar 

  • Jafari, H., Hejazi, S. R., & Rasti-Barzoki, M. (2016). Pricing decisions in dual-channel supply chain including monopolistic manufacturer and duopolistic retailers: A game-theoretic approach. Journal of Industry, Competition and Trade, 16(3), 323–343.

    Article  Google Scholar 

  • Jamali, M.-B., & Rasti-Barzoki, M. (2018). A game theoretic approach for green and non-green product pricing in chain-to-chain competitive sustainable and regular dual-channel supply chains. Journal of Cleaner Production, 170, 1029–1043.

    Article  Google Scholar 

  • Khorshidvand, B., Soleimani, H., Sibdari, S., & Esfahani, M. M. S. (2021). Revenue management in a multi-level multi-channel supply chain considering pricing, greening, and advertising decisions. Journal of Retailing and Consumer Services, 59, 102425.

    Article  Google Scholar 

  • Kuiti, M. R., Ghosh, D., Gouda, S., Swami, S., & Shankar, R. (2019). Integrated product design, shelf-space allocation and transportation decisions in green supply chains. International Journal of Production Research, 57(19), 6181–6201.

    Article  Google Scholar 

  • Li, B., Hou, P.-W., Chen, P., & Li, Q.-H. (2016). Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer. International Journal of Production Economics, 178, 154–168.

    Article  Google Scholar 

  • Li, B., Zhu, M., Jiang, Y., & Li, Z. (2016). Pricing policies of a competitive dual-channel green supply chain. Journal of Cleaner Production, 112, 2029–2042.

    Article  Google Scholar 

  • Li, Q., Li, B., Chen, P., & Hou, P. (2017). Dual-channel supply chain decisions under asymmetric information with a risk-averse retailer. Annals of Operations Research, 257(1), 423–447.

    Article  Google Scholar 

  • Li, Q., Xiao, T., & Qiu, Y. (2018). Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns. Journal of Cleaner Production, 190, 303–314.

    Article  Google Scholar 

  • Li, Z., Zhang, H., & Gao, R. (2020). Frugal innovation in supply chain cooperation considering e-retailer’s platform value. Soft Computing, pp. 1–15.

  • Liu, P., & Yi, S.-P. (2017). Pricing policies of green supply chain considering targeted advertising and product green degree in the big data environment. Journal of Cleaner Production, 164, 1614–1622.

    Article  Google Scholar 

  • Liu, X., Du, W., & Sun, Y. (2020). Green supply chain decisions under different power structures: Wholesale price vs. revenue sharing contract. International Journal of Environmental Research and Public Health, 17(21): 7737.

  • Liu, Z. L., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research, 218(3), 602–613.

    Article  Google Scholar 

  • Ma, P., Wang, H., & Shang, J. (2013). Contract design for two-stage supply chain coordination: Integrating manufacturer-quality and retailer-marketing efforts. International Journal of Production Economics, 146(2), 745–755.

    Article  Google Scholar 

  • Madani, S. R., & Rasti-Barzoki, M. (2017). Sustainable supply chain management with pricing, greening and governmental tariffs determining strategies: A game-theoretic approach. Computers & Industrial Engineering, 105, 287–298.

    Article  Google Scholar 

  • Mondal, C., & Giri, B. C. (2020). Pricing and used product collection strategies in a two-period closed-loop supply chain under greening level and effort dependent demand. Journal of Cleaner Production, 265, 121335.

    Article  Google Scholar 

  • Navinchandra, D. (1990). Steps toward environmentally compatible product and process design: A case for green engineering. Technical report, Carnegie-mellon Univ Pittsburgh PA Robotics Inst.

  • Palevich, R. (2011). Lean sustainable supply chain the: How to create a green infrastructure with lean technologies. Ft Press.

  • Panja, S., & Mondal, S. K. (2020). Exploring a two-layer green supply chain game theoretic model with credit linked demand and mark-up under revenue sharing contract. Journal of Cleaner Production, 250, 119491.

    Article  Google Scholar 

  • Papagiannakis, G., Voudouris, I., & Lioukas, S. (2014). The road to sustainability: Exploring the process of corporate environmental strategy over time. Business Strategy and the Environment, 23(4), 254–271.

    Article  Google Scholar 

  • Rahmani, K., & Yavari, M. (2019). Pricing policies for a dual-channel green supply chain under demand disruptions. Computers & Industrial Engineering, 127, 493–510.

    Article  Google Scholar 

  • Shen, B., Choi, T.-M., & Chan, H.-L. (2019). Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the Big Data Era. Technological Forecasting and Social Change, 144, 412–420.

    Article  Google Scholar 

  • Shu, L., Qu, S., & Wu, Z. (2020). Supply chain coordination with optimal pricing and logistics service decision in online retailing. Arabian Journal for Science and Engineering, 45(3), 2247–2261.

    Article  Google Scholar 

  • Soleimani, F. (2016). Optimal pricing decisions in a fuzzy dual-channel supply chain. Soft Computing, 20(2), 689–696.

    Article  Google Scholar 

  • Song, H., & Gao, X. (2018). Green supply chain game model and analysis under revenue-sharing contract. Journal of Cleaner Production, 170, 183–192.

    Article  Google Scholar 

  • Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80.

    Article  Google Scholar 

  • Xu, G., Dan, B., Zhang, X., & Liu, C. (2014). Coordinating a dual-channel supply chain with risk-averse under a two-way revenue sharing contract. International Journal of Production Economics, 147, 171–179.

    Article  Google Scholar 

  • Yan, R. (2008). Profit sharing and firm performance in the manufacturer-retailer dual-channel supply chain. Electronic Commerce Research, 8(3), 155–172.

    Article  Google Scholar 

  • Yang, Z., Sun, J., Zhang, Y., & Wang, Y. (2020). Synergy between green supply chain management and green information systems on corporate sustainability: An informal alignment perspective. Environment, Development and Sustainability, 22(2), 1165–1186.

    Article  Google Scholar 

  • Yao, Z., Leung, S. C., & Lai, K. K. (2008). Manufacturer’s revenue-sharing contract and retail competition. European Journal of Operational Research, 186(2), 637–651.

    Article  Google Scholar 

  • Zand, F., Yaghoubi, S., & Sadjadi, S. J. (2019). Impacts of government direct limitation on pricing, greening activities and recycling management in an online to offline closed loop supply chain. Journal of Cleaner Production, 215, 1327–1340.

    Article  Google Scholar 

  • Zhou, Y., Bao, M., Chen, X., & Xu, X. (2016). Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns. Journal of Cleaner Production, 133, 402–413.

    Article  CAS  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Barman.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Code availability

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A

In the centralized case, the \(1^{st}\) order derivative of \(\Pi _{sc}^C\) from (6) w.r.to \(p_r\), \(p_o\) and g are

$$\begin{aligned}&\frac{\partial \Pi _{sc}^C }{\partial p_r}= \gamma _1 g - 2b_1p_r +b_1c + b_1^{'} p_o + b_2^{'} p_o - b_2^{'} c +a \alpha \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial \Pi _{sc}^C }{\partial p_o}= \gamma _2 g - 2b_2p_o +b_2c + b_2^{'} p_r + b_1^{'} p_r - b_1^{'} c +a (1-\alpha ) \end{aligned}$$
(41)
$$\begin{aligned}&\frac{\partial \Pi _{sc}^C }{\partial g} = -e g + \gamma _1 (p_r-c) +\gamma _2 (p_o-c) \end{aligned}$$
(42)

To prove the optimality of the solution, equation (7), (8) and (9); the corresponding hessian matrix is calculated as follows:

$$\begin{aligned} H(\Pi _{sc}^C) = \begin{bmatrix} \frac{\partial ^2 \Pi _{sc}^c }{\partial p_r^2} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial p_r \partial p_o} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial p_r \partial g} \\ \frac{\partial ^2 \Pi _{sc}^C }{\partial p_o \partial p_r} &{} \frac{\partial ^2 \Pi _{sc}^C}{\partial p_o^2} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial p_o \partial g} \\ \frac{\partial ^2 \Pi _{sc}^C }{\partial g \partial p_r} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial g \partial p_o} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial g^2} \end{bmatrix} = \begin{bmatrix} &{} -2b_1 &{} b_1^{'}+b_2^{'} &{} \gamma _1 \\ &{} b_1^{'}+b_2^{'} &{} -2b_2 &{} \gamma _2 \\ &{} \gamma _1 &{} \gamma _2 &{} -e \end{bmatrix} \end{aligned}$$

The above Hessian matrix (\(H(\Pi _{sc}^C)\)) is must be negative definite in nature and the principal minors (\(H^{i\times i}\), \(i=1,2\)) should have the following conditions

\(|(H_{1*1})|\) = \(\frac{\partial ^2 \Pi _{sc}^C }{\partial p_r^2} = -2b_1 <0 \),

\(|(H_{2*2})|\) = \(\det \begin{bmatrix} \frac{\partial ^2 \Pi _{sc}^C }{\partial p_r^2} &{} \frac{\partial ^2 \Pi _{sc}^C }{\partial p_r \partial p_o} \\ \frac{\partial ^2 \Pi _{sc}^C }{\partial p_o \partial p_r} &{} \frac{\partial ^2 \Pi _{sc}^C}{\partial p_o^2} \end{bmatrix}\) = \(\det \begin{bmatrix} &{} -2b_1 &{} b_1^{'}+b_2^{'} \\ &{} b_1^{'}+b_2^{'} &{} -2b_2 \end{bmatrix}\) \(>0\) .

Therefore, \(|(H_{2*2})|=4b_1b_2-(b_1^{'}+b_2^{'})^2 >0 \) if \(\frac{4b_1b_2}{(b_1^{'}+b_2^{'})^2} > 1 \) holds

\(|H(\Pi _{sc}^C)|=-4e b_1 b_2 + 2 b_1 \gamma _2^2 + 2b_2 \gamma _1^2 +2 \gamma _1 \gamma _2 (b_1^{'}+b_2^{'})+e(b_1^{'}+b_2^{'})^2 <0\) if \(\frac{4e b_1 b_2}{2 b_1 \gamma _2^2 + 2b_2 \gamma _1^2 +2 \gamma _1 \gamma _2 (b_1^{'}+b_2^{'})+e(b_1^{'}+b_2^{'})^2}>1\) holds.

1.2 Appendix B

The second order derivative of \(\Pi _{m}^{DC}\) with respect to \(p_o\), w and g are,

$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{DC} }{\partial p_o^2}=-2 \big (b_2- b_1^{'}K\big )<0 \quad \text {if} \quad b_2> b_1^{'}K \quad \text {holds.} \end{aligned}$$
(43)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{DC} }{\partial w^2}= -b_1 <0 \end{aligned}$$
(44)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{DC} }{\partial g^2}= -e<0 \end{aligned}$$
(45)

The corresponding Hessian matrix is as follows,

$$\begin{aligned} H(\Pi _{m}^{DC}) = \begin{bmatrix} \frac{\partial ^2 \Pi _{m}^{DC}}{\partial p_o^2} &{} \frac{\partial ^2 \Pi _{m}^{DC} }{\partial p_o \partial w} &{} \frac{\partial ^2 \Pi _{m}^{DC} }{\partial p_o \partial g} \\ \frac{\partial ^2 \Pi _{m}^{DC} }{\partial w \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{DC}}{\partial w^2} &{} \frac{\partial ^2 \Pi _{m}^{DC} }{\partial w \partial g} \\ \frac{\partial ^2 \Pi _{m}^{DC}}{\partial g \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{DC} }{\partial g \partial w} &{} \frac{\partial ^2 \Pi _{m}^{DC} }{\partial g^2} \end{bmatrix} = \begin{bmatrix} &{} -2 \big (b_2- b_1^{'}K\big ) &{} \frac{b_1^{'}}{2}+b_1K &{} \gamma _1 K+\gamma _2 \\ &{} \frac{b_1^{'}}{2}+b_1K &{} -b_1 &{} \frac{\gamma _1}{2} \\ &{} \gamma _1 K+\gamma _2 &{} \frac{\gamma _1}{2} &{} -e \end{bmatrix} \end{aligned}$$

The corresponding principal minor

det\((H_{2*2}) > 0 \) gives \(2b_1 \big (b_2- b_1^{'}K\big ) > \big (\frac{b_1^{'}}{2}+b_1K \big )^2\).

and

det\((H_{3*3}) < 0 \) gives \( e \big (\frac{b_1^{'}}{2}+b_1K \big )^2 +\gamma _1 \big (\gamma _1 K+\gamma _2 \big ) \big (\frac{b_1^{'}}{2}+b_1K \big ) +b_1 \big (\gamma _1 K+\gamma _2 \big )^2 < 2 \big (b_2- b_1^{'}K\big ) \big (b_1 e - \frac{\gamma _1^2}{4}\big ) \).

1.3 Appendix C

The second order derivative of \(\Pi _{m}^{CS}\) with respect to \(p_o\), w and g are,

$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{CS} }{\partial p_o^2}=-2 \big (b_2- b_1^{'}K\big )<0 \quad \text {if} \quad b_2> b_1^{'}K \quad \text {holds.} \end{aligned}$$
(46)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{CS} }{\partial w^2}= -b_1 <0 \end{aligned}$$
(47)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{CS} }{\partial g^2}= -e<0 \end{aligned}$$
(48)

The corresponding Hessian matrix is as follows,

$$\begin{aligned} H(\Pi _{m}^{CS}) = \begin{bmatrix} \frac{\partial ^2 \Pi _{m}^{CS}}{\partial p_r^2} &{} \frac{\partial ^2 \Pi _{m}^{CS} }{\partial p_r \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{CS} }{\partial p_r \partial g} \\ \frac{\partial ^2 \Pi _{m}^{CS} }{\partial p_o \partial p_r} &{} \frac{\partial ^2 \Pi _{m}^{CS}}{\partial p_o^2} &{} \frac{\partial ^2 \Pi _{m}^{CS} }{\partial p_o \partial g} \\ \frac{\partial ^2 \Pi _{m}^{CS}}{\partial g \partial p_r} &{} \frac{\partial ^2 \Pi _{m}^{CS} }{\partial g \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{CS} }{\partial g^2} \end{bmatrix} = \begin{bmatrix} &{} -2 \big (b_2- b_1^{'}K\big ) &{} \frac{b_1^{'}}{2}+b_1K &{} \gamma _1 K+\gamma _2 \\ &{} \frac{b_1^{'}}{2}+b_1K &{} -b_1 &{} \frac{\gamma _1}{2} \\ &{} \gamma _1 K+\gamma _2 &{} \frac{\gamma _1}{2} &{} -\delta e \end{bmatrix} \end{aligned}$$

The corresponding principal minor

det\((H_{2*2}) > 0 \) gives \(2b_1 \big (b_2- b_1^{'}K\big ) > \big (\frac{b_1^{'}}{2}+b_1K \big )^2\).

and

det\((H_{3*3}) < 0 \) gives \( \delta e \big (\frac{b_1^{'}}{2}+b_1K \big )^2 +\gamma _1 \big (\gamma _1 K+\gamma _2 \big ) \big (\frac{b_1^{'}}{2}+b_1K \big ) +b_1 \big (\gamma _1 K+\gamma _2 \big )^2 < 2 \big (b_2- b_1^{'}K\big ) \big (b_1 \delta e - \frac{\gamma _1^2}{4}\big ) \).

1.4 Appendix D

The second order derivative of \(\Pi _{m}^{PS}\) with respect to \(p_o\), w and g are,

$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{PS} }{\partial p_o^2}=-2 \big (b_2- b_1^{'}K\big )<0 \quad \text {if} \quad b_2> b_1^{'}K \quad \text {holds.} \end{aligned}$$
(49)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{PS} }{\partial w^2}= -b_1 <0 \end{aligned}$$
(50)
$$\begin{aligned}&\frac{\partial ^2 \Pi _{m}^{PS} }{\partial g^2}= -e<0 \end{aligned}$$
(51)

The corresponding Hessian matrix is as follows,

$$\begin{aligned} H(\Pi _{m}^{PS}) = \begin{bmatrix} \frac{\partial ^2 \Pi _{m}^{PS}}{\partial p_r^2} &{} \frac{\partial ^2 \Pi _{m}^{PS} }{\partial p_r \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{PS} }{\partial p_r \partial g} \\ \frac{\partial ^2 \Pi _{m}^{PS} }{\partial p_o \partial p_r} &{} \frac{\partial ^2 \Pi _{m}^{PS}}{\partial p_o^2} &{} \frac{\partial ^2 \Pi _{m}^{PS} }{\partial p_o \partial g} \\ \frac{\partial ^2 \Pi _{m}^{PS}}{\partial g \partial p_r} &{} \frac{\partial ^2 \Pi _{m}^{PS} }{\partial g \partial p_o} &{} \frac{\partial ^2 \Pi _{m}^{PS} }{\partial g^2} \end{bmatrix} = \begin{bmatrix} &{} K_1 {b_1^{'}}^2 - 2 (b_2-b_1^{'}K) &{} \frac{(1-\sigma )b_1^{'}}{2}+b_1K &{} K_1b_1^{'} \gamma _1 +\gamma _1 K+\gamma _2 \\ &{} \frac{(1-\sigma )b_1^{'}}{2}+b_1K &{} -b_1 (1-\sigma +K_1 b_1) &{} \frac{(1-\sigma )\gamma _1}{2} \\ &{} K_1b_1^{'} \gamma _1 +\gamma _1 K+\gamma _2 &{} \frac{(1-\sigma )\gamma _1}{2} &{} K_1 \gamma _1^2-e \end{bmatrix} \end{aligned}$$

The corresponding principal minor

det\((H_{2*2}) > 0 \) gives \( b_1 \big (2b_2-2Kb_1^{'}-K_1{b_1^{'}}^2 \big ) \big (1-\sigma +K_1 b_1 \big ) > \big \{ \frac{(1-\sigma )b_1^{'}}{2}+b_1K \big \}^2 \).

and

det\((H_{3*3}) < 0 \) gives \( \big (2b_2-2Kb_1^{'}-K_1{b_1^{'}}^2 \big ) \Big \{ b_1(1-\sigma +K_1 b_1) \big (K_1 \gamma _1^2-e \big ) + \Big (\frac{(1-\sigma )\gamma _1}{2} \Big )^2 \Big \} + \big (K_1b_1^{'} \gamma _1 +\gamma _1 K+\gamma _2 \big ) \Big \{ 2 \big (\frac{(1-\sigma )b_1^{'}}{2}+b_1K \big ) \big (\frac{(1-\sigma )\gamma _1}{2} \big ) +b_1 (1-\sigma +b_1K_1) \big (K_1b_1^{'} \gamma _1 +\gamma _1 K+\gamma _2 \big ) \Big \} < \big (\frac{(1-\sigma )b_1^{'}}{2}+b_1K \big ) \Big \{ \big (\frac{(1-\sigma )b_1^{'}}{2}+b_1K \big ) \big (K_1 \gamma _1^2-e \big ) \Big \} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Barman, A., Roy, B. et al. Pricing and greening strategies in a dual-channel supply chain with cost and profit sharing contracts. Environ Dev Sustain 25, 5053–5086 (2023). https://doi.org/10.1007/s10668-022-02255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02255-0

Keywords

Navigation