Skip to main content
Log in

Synthesis and characterization of NH2-SiO2@Cu-MOF as a high-performance adsorbent for Pb ion removal from water environment

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Heavy metal pollution is becoming a global health and environmental concern, so preventing damage to nature is of high significance. In this work, NH2-SiO2 NPs’ immobilization on Cu-MOF was performed to fabricate an effective adsorbent for Pb(II) elimination from aqueous environments. Prepared adsorbent benefits from the combination of functional groups of NH2-SiO2 NPs and porous crystalline structure of Cu-MOF. The results revealed that the adsorption of Pb metal ions onto NH2-SiO2@Cu-MOF follows a Langmuir isotherm and the maximum adsorption capacity was found to be 166.67 mg/g. The kinetic studies showed that the data of Pb adsorption on NH2-SiO2@Cu-MOF are in good agreement with the pseudo-second-order model and the potential mechanism for the adsorption process confirmed as the coordination interaction between N in the amino group (–NH2) and Pb(II). The experimental factors which had the most impact on the adsorption were investigated. The highest performance of the adsorbent appeared at a pH value of 6. The NH2-SiO2@Cu-MOF showed excellent performance in real samples and capability for reuse of up to 5 cycles. Briefly, results indicate that the NH2-SiO2@Cu-MOF is a promising alternative for selective removal of Pb(II) from the aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., et al. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141–161.

    Google Scholar 

  • Alhumaimess, M. S. (2019). Sulfhydryl functionalized activated carbon for Pb(II) ions removal: Kinetics, isotherms, and mechanism. Separation Science and Technology, 54, 1–14.

    Google Scholar 

  • Baek, Y., Seo, D. K., Choi, J. H., Lee, B., Kim, Y. H., Park, S. M., et al. (2016). Improvement of vertically aligned carbon nanotube membranes: Desalination potential, flux enhancement and scale-up. Desalination and Water Treatment, 57(58), 28133–28140.

    CAS  Google Scholar 

  • Bagheri, H., Afkhami, A., Saber-Tehrani, M., & Khoshsafar, H. (2012). Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta, 97, 87–95.

    CAS  Google Scholar 

  • Beckner, M., & Dailly, A. (2016). A pilot study of activated carbon and metal–organic frameworks for methane storage. Applied Energy, 162, 506–514.

    CAS  Google Scholar 

  • Cao, C.-Y., Qu, J., Wei, F., Liu, H., & Song, W.-G. (2012). Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Applied Materials & Interfaces, 4(8), 4283–4287.

    CAS  Google Scholar 

  • Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P., Orpen, A. G., & Williams, I. D. (1999). A chemically functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. Science, 283(5405), 1148–1150.

    CAS  Google Scholar 

  • Edebali, S., & Pehlivan, E. (2016). Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technology, 301, 520–525.

    CAS  Google Scholar 

  • Filippousi, M., Turner, S., Leus, K., Siafaka, P. I., Tseligka, E. D., Vandichel, M., et al. (2016). Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriers. International Journal of Pharmaceutics, 509(1–2), 208–218.

    CAS  Google Scholar 

  • Ghorbani-Kalhor, E. (2016). A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd (II), Pb(II), and Ni (II). Microchimica Acta, 183(9), 2639–2647.

    CAS  Google Scholar 

  • Godfray, Hc J, Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    CAS  Google Scholar 

  • Guan, X., Wang, Y., & Cai, W. (2019). A composite metal-organic framework material with high selective adsorption for dibenzothiophene. Chinese Chemical Letters, 30, 1310–1314.

    CAS  Google Scholar 

  • Hakimifar, A., & Morsali, A. (2018). Urea-based metal-organic frameworks as high and fast adsorbent for Hg2+ and Pb2+ removal from water. Inorganic Chemistry, 58(1), 180–187.

    Google Scholar 

  • Han, Y., Xu, H., Wang, X., Li, Y., Chen, S., & Xu, Z.-L. (2016). Selective catalytic properties of new microporous cobalt metal-organic frameworks controlled by their structural topologies. Materials Letters, 184, 73–77.

    CAS  Google Scholar 

  • Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., et al. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172.

    CAS  Google Scholar 

  • Huang, L., He, M., Chen, B., & Hu, B. (2018). Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 199, 435–444.

    CAS  Google Scholar 

  • Kayal, S., Sun, B., & Chakraborty, A. (2015). Study of metal-organic framework MIL-101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal–organic frameworks). Energy, 91, 772–781.

    CAS  Google Scholar 

  • Ke, F., Qiu, L.-G., Yuan, Y.-P., Peng, F.-M., Jiang, X., Xie, A.-J., et al. (2011). Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. Journal of Hazardous Materials, 196, 36–43.

    CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244, 444–456.

    Google Scholar 

  • Kobal, A. B., Horvat, M., Prezelj, M., Briški, A. S., Krsnik, M., Dizdarevič, T., et al. (2004). The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. Journal of Trace Elements in Medicine and Biology, 17(4), 261–274.

    CAS  Google Scholar 

  • Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92–107.

    CAS  Google Scholar 

  • Landaburu-Aguirre, J., Pongrácz, E., Perämäki, P., & Keiski, R. L. (2010). Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation. Journal of Hazardous Materials, 180(1–3), 524–534.

    CAS  Google Scholar 

  • Li, X., Bian, C., Meng, X., & Xiao, F.-S. (2016). Design and synthesis of an efficient nanoporous adsorbent for Hg 2+ and Pb 2+ ions in water. Journal of Materials Chemistry A, 4(16), 5999–6005.

    CAS  Google Scholar 

  • Li, Y., Zhou, Y., Zhou, Y., Lei, J., & Pu, S. (2018). Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions. Water Science and Technology, 78(12), 2553–2563.

    CAS  Google Scholar 

  • Lin, K.-S., Adhikari, A. K., Ku, C.-N., Chiang, C.-L., & Kuo, H. (2012). Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal of Hydrogen Energy, 37(18), 13865–13871.

    CAS  Google Scholar 

  • Lin, S., Liu, L., Yang, Y., Zhang, W., Xu, M., & Lin, K. (2017). Using amine-functionalized magnetite hollow nanospheres (AMHNs) as adsorbents for heavy metal ions. Water Science and Technology, 76(2), 452–458.

    CAS  Google Scholar 

  • Ling, L., Liu, W.-J., Zhang, S., & Jiang, H. (2016). Achieving high-efficiency and ultrafast removal of Pb(II) by one-pot incorporation of a N-doped carbon hydrogel into FeMg layered double hydroxides. Journal of Materials Chemistry A, 4(26), 10336–10344.

    CAS  Google Scholar 

  • Liu, J., Zou, R., & Zhao, Y. (2016). Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters, 57(44), 4873–4881.

    CAS  Google Scholar 

  • Liu, Q., Li, Y., Chen, H., Lu, J., Yu, G., Möslang, M., et al. (2020). Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. Journal of Hazardous Materials, 382, 121040.

    CAS  Google Scholar 

  • Luo, X., Ding, L., & Luo, J. (2015). Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal–organic frameworks MIL-101 (Cr). Journal of Chemical and Engineering Data, 60(6), 1732–1743.

    CAS  Google Scholar 

  • Luo, X., Liu, L., Deng, F., & Luo, S. (2013). Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(II) ions in real environmental water samples. Journal of Materials Chemistry A, 1(28), 8280–8286.

    CAS  Google Scholar 

  • Mahadi, N., Misran, H., Othman, S., Manap, A., Salim, M., Shah, N., et al. Low-cost synthesis and characterizations of metal-organic framework (MOF-199) materials by nonsurfactant templating method. In X. Z. Hu & A. K. T. Lau (Eds.), Advanced materials research, 2015 (Vol. 1115, pp. 426–429). Trans Tech Publ.

  • Mahjoub, A., & Morsali, A. (2003). Hg (II), Tl(III), Cu (I), and Pd (II) complexes with 2, 2’-diphenyl-4, 4’-bithiazole (DPBTZ), syntheses and X-ray crystal structure of [Hg (DPBTZ)(SCN) 2]. Journal of Coordination Chemistry, 56(9), 779–785.

    CAS  Google Scholar 

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of lead from lead battery recycling plant wastewater. Industrial and Engineering Chemistry Research, 41(6), 1579–1582.

    CAS  Google Scholar 

  • Meyer, K., Ranocchiari, M., & van Bokhoven, J. A. (2015). Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science, 8(7), 1923–1937.

    CAS  Google Scholar 

  • Nagendran, A., Vijayalakshmi, A., Arockiasamy, D. L., Shobana, K., & Mohan, D. (2008). Toxic metal ion separation by cellulose acetate/sulfonated poly (ether imide) blend membranes: Effect of polymer composition and additive. Journal of Hazardous Materials, 155(3), 477–485.

    CAS  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47.

    CAS  Google Scholar 

  • Qaiser, S., Saleemi, A. R., & Umar, M. (2009). Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study. Journal of Hazardous Materials, 166(2–3), 998–1005.

    CAS  Google Scholar 

  • Ricco, R., Konstas, K., Styles, M. J., Richardson, J. J., Babarao, R., Suzuki, K., et al. (2015). Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. Journal of Materials Chemistry A, 3(39), 19822–19831.

    CAS  Google Scholar 

  • Rouhani, F., & Morsali, A. (2018). Goal‐directed design of metal–organic frameworks for HgII and PbII adsorption from aqueous solutions. Chemistry–A European Journal, 24(65), 17170–17179.

    CAS  Google Scholar 

  • Salarian, M., Ghanbarpour, A., Behbahani, M., Bagheri, S., & Bagheri, A. (2014). A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra traces of lead (II) ions. Microchimica Acta, 181(9–10), 999–1007.

    CAS  Google Scholar 

  • Saleem, H., Rafique, U., & Davies, R. P. (2016). Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 221, 238–244.

    CAS  Google Scholar 

  • Shams, M., Dehghani, M. H., Nabizadeh, R., Mesdaghinia, A., Alimohammadi, M., & Najafpoor, A. A. (2016). Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: modeling, mechanical agitation versus sonication. Journal of Molecular Liquids, 224, 151–157.

    CAS  Google Scholar 

  • Shirzadi, H., & Nezamzadeh-Ejhieh, A. (2017). An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution. Journal of Molecular Liquids, 230, 221–229.

    CAS  Google Scholar 

  • Sun, K., Li, L., Yu, X., Liu, L., Meng, Q., Wang, F., et al. (2017). Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. Journal of Colloid and Interface Science, 486, 128–135.

    CAS  Google Scholar 

  • Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—A progress report. Chemical Society Reviews, 40(2), 498–519.

    CAS  Google Scholar 

  • Vinoth Kumar, R., Monash, P., & Pugazhenthi, G. (2016). Treatment of oil-in-water emulsion using tubular ceramic membrane acquired from locally available low-cost inorganic precursors. Desalination and Water Treatment, 57(58), 28056–28070.

    CAS  Google Scholar 

  • Wang, D., Jia, F., Wang, H., Chen, F., Fang, Y., Dong, W., et al. (2018a). Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. Journal of Colloid and Interface Science, 519, 273–284.

    CAS  Google Scholar 

  • Wang, K., Gu, J., & Yin, N. (2017). Efficient removal of Pb(II) and Cd (II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Industrial and Engineering Chemistry Research, 56(7), 1880–1887.

    CAS  Google Scholar 

  • Wang, Y., Ye, G., Chen, H., Hu, X., Niu, Z., & Ma, S. (2015). Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution. Journal of Materials Chemistry A, 3(29), 15292–15298.

    CAS  Google Scholar 

  • Wang, Y., Zhao, L., Hou, J., Peng, H., Wu, J., Liu, Z., et al. (2018b). Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents. Water Science and Technology, 77(11), 2699–2708.

    CAS  Google Scholar 

  • Wen, J., Fang, Y., & Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere, 201, 627–643.

    CAS  Google Scholar 

  • Wu, Y., Xu, G., Liu, W., Yang, J., Wei, F., Li, L., et al. (2015). Postsynthetic modification of copper terephthalate metal-organic frameworks and their new application in preparation of samples containing heavy metal ions. Microporous and Mesoporous Materials, 210, 110–115.

    CAS  Google Scholar 

  • Yang, Q., Wang, B., Chen, Y., Xie, Y., & Li, J. (2019). An anionic In (III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 30(1), 234–238.

    CAS  Google Scholar 

  • Yang, W., Wang, J., Yang, Q., Pei, H., Hu, N., Suo, Y., et al. (2018). Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal. Chemical Engineering Journal, 339, 230–239.

    CAS  Google Scholar 

  • Yang, Z., Xu, X., Liang, X., Lei, C., Wei, Y., He, P., et al. (2016). MIL-53 (Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols. Applied Catalysis, B: Environmental, 198, 112–123.

    CAS  Google Scholar 

  • Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M., et al. (2016). Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of Colloid and Interface Science, 463, 118–127.

    CAS  Google Scholar 

  • Yazdi, M. N., Yamini, Y., Asiabi, H., & Alizadeh, A. (2018). A metal organic framework prepared from benzene-1, 3, 5-tricarboxylic acid and copper (II), and functionalized with various polysulfides as a sorbent for selective sorption of trace amounts of heavy metal ions. Microchimica Acta, 185(11), 525.

    Google Scholar 

  • Yee, K.-K., Reimer, N., Liu, J., Cheng, S.-Y., Yiu, S.-M., Weber, J., et al. (2013). Effective mercury sorption by thiol-laced metal–organic frameworks: in strong acid and the vapor phase. Journal of the American Chemical Society, 135(21), 7795–7798.

    CAS  Google Scholar 

  • Yin, N., Wang, K., & Li, Z. (2016). Rapid microwave-promoted synthesis of Zr-MOFs: an efficient adsorbent for Pb(II) removal. Chemistry Letters, 45(6), 625–627.

    CAS  Google Scholar 

  • Yu, C., Han, X., Shao, Z., Liu, L., & Hou, H. (2018). High efficiency and fast removal of trace Pb(II) from aqueous solution by carbomethoxy-functionalized metal-organic framework. Crystal Growth & Design, 18(3), 1474–1482.

    CAS  Google Scholar 

  • Yu, X., Kang, D., Hu, Y., Tong, S., Ge, M., Cao, C., et al. (2014). One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions. RSC Advances, 4(59), 31362–31369.

    CAS  Google Scholar 

  • Yu, X., Tong, S., Ge, M., Zuo, J., Cao, C., & Song, W. (2013). One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A, 1(3), 959–965.

    CAS  Google Scholar 

  • Zhang, J., Xiong, Z., Li, C., & Wu, C. (2016). Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. Journal of Molecular Liquids, 221, 43–50.

    CAS  Google Scholar 

  • Zhang, L., Gao, Y., Zhou, Q., Kan, J., & Wang, Y. (2014). High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles. Water, Air, and Soil pollution, 225(6), 1967.

    Google Scholar 

  • Zhang, L., Goh, S., Hu, X., Crawford, R., & Yu, A. (2012). Removal of aqueous toxic Hg(II) by functionalized mesoporous silica materials. Journal of Chemical Technology and Biotechnology, 87(10), 1473–1479.

    CAS  Google Scholar 

  • Zhang, R., Liu, Y., An, Y., Wang, Z., Wang, P., Zheng, Z., et al. (2019). A water-stable triazine-based metal-organic framework as an efficient adsorbent of Pb(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 315–322.

    CAS  Google Scholar 

  • Zhang, R., Zhou, Y., Gu, X., & Lu, J. (2015). Competitive adsorption of methylene blue and Cu2+ onto citric acid modified pine sawdust. CLEAN–Soil, Air, Water, 43(1), 96–103.

    Google Scholar 

  • Zhou, Y., Hu, Y., Huang, W., Cheng, G., Cui, C., & Lu, J. (2018). A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chemical Engineering Journal, 341, 47–57.

    CAS  Google Scholar 

  • Zhu, X., Jiang, W., Cui, W., Liang, R., Zhang, L., & Qiu, J. (2019). Facile surface modification of mesoporous silica with heterocyclic silanes for efficiently removing arsenic. Chinese Chemical Letters, 30(6), 1133–1136.

    CAS  Google Scholar 

  • Zou, F., Yu, R., Li, R., & Li, W. (2013). Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@ H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. Chem Phys Chem, 14(12), 2825–2832.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touba Hamoule.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, N., Mousazadeh, B. & Hamoule, T. Synthesis and characterization of NH2-SiO2@Cu-MOF as a high-performance adsorbent for Pb ion removal from water environment. Environ Dev Sustain 23, 1688–1705 (2021). https://doi.org/10.1007/s10668-020-00646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00646-9

Keywords

Navigation