Skip to main content
Log in

On magnetization dynamics with inertial effects

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We consider a mathematical model describing magnetization dynamics with inertial effects. The model consists of a modified form of the Landau–Lifshitz–Gilbert equation for the evolution of the magnetization vector in a rigid ferromagnet. We discuss global existence of weak solutions and characterize the \(\omega \)-limit set for the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciornei MC, Rubí JM, Wegrowe J-E (2011) Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys Rev B 83(020410 R):1–4

    Google Scholar 

  2. Wegrowe J-E, Ciornei MC (2012) Magnetization dynamics, gyromagnetic relation, and inertial effects. Am J Phys 80:607

    Article  ADS  Google Scholar 

  3. Ammari H, Halpern L, Hamdache K (2000) Asymptotic behaviour of thin ferromagnetic films. Asymptot Anal 24(3–4):277–294

    MATH  MathSciNet  Google Scholar 

  4. Hamdache K, Tilioua M (2001) On the zero thickness limit of thin ferromagnetic films with surface anisotropy energy. Math Models Methods Appl Sci 11(8):1469–1490

    Article  MATH  MathSciNet  Google Scholar 

  5. Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Visintin A (1985) On the Landau–Lifshitz equation for ferromagnetism. Jpn J Appl Math 2:69–84

    Article  MATH  MathSciNet  Google Scholar 

  7. Alouges F, Soyeur A (1992) On global weak solutions for Landau–Lifshitz equations: existence and non uniqueness. Nonlinear Anal 18:1071–1084

    Article  MATH  MathSciNet  Google Scholar 

  8. Bertsch M, Podio-Guidugli P, Valente V (2001) On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. Ann Mat Pura Appl 179(4):331–360

    Article  MATH  MathSciNet  Google Scholar 

  9. Podio-Guidugli P, Valente V (2001) Existence of global-in-time weak solutions to a modified Gilbert equation. Nonlinear Anal 47:147–158

    Article  MATH  MathSciNet  Google Scholar 

  10. Roubiček T, Tomassetti G, Zanini C (2009) The Gilbert equation with dry-friction type damping. J Math Anal Appl 355(2):453–468

    Article  MATH  MathSciNet  Google Scholar 

  11. Carbou G, Effendiev M, Fabrie P (2009) Relaxed model for the hysteresis in micromagnetism. Proc R Soc Edinb Sect A 139(4):759–773

    Article  MATH  Google Scholar 

  12. Tilioua M (2011) Current-induced magnetization dynamics. Global existence of weak solutions. J Math Anal Appl 373:635–642

    Article  MATH  MathSciNet  Google Scholar 

  13. Carbou G, Fabrie P (1998) Time average in micromagnetism. J Differ Equ 147:383–409

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Langlais M, Phillips D (1985) Stabilization of solutions of nonlinear and degenerate evolution equations. Nonlinear Anal 9(4):321–333

    Article  MATH  MathSciNet  Google Scholar 

  15. Evans LC (1991) Partial regularity for stationary harmonic maps into spheres. Arch Ration Mech Anal 116(2):101–113

    Article  MATH  Google Scholar 

  16. Lin F, Wang C (2008) The analysis of harmonic maps and their heat flows. World Scientific Publishing Co., Pte. Ltd, Hackensack

    Book  MATH  Google Scholar 

  17. Guo B, Ding S (2008) Landau–Lifshitz equations. Frontiers of research with the Chinese Academy of Sciences, vol 1. World Scientific Publishing Co., Pte. Ltd., Hackensack, p xii+403

    Google Scholar 

  18. Sulem P-L, Sulem C, Bardos C (1986) On the continuous limit for a system of classical spins. Commun Math Phys 107(3):431–454

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Hamdache K, Tilioua M (2006) The Landau–Lifshitz equations and the damping parameter. Boll Unione Mat Ital Sez B 8(2):283–297

    MathSciNet  Google Scholar 

  20. Alouges F, Jaisson P (2006) Convergence of a finite element discretization for the Landau–Lifshitz equations in micromagnetism. Math Models Methods Appl Sci 16:299–316

    Article  MATH  MathSciNet  Google Scholar 

  21. Bartels S, Prohl A (2006) Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J Numer Anal 44:1405–1419

    Article  MATH  MathSciNet  Google Scholar 

  22. Bartels S, Ko J, Prohl A (2008) Numerical approximation of an explicit approximation scheme for the Landau–Lifshitz–Gilbert equation. Math Comput 77:773–788

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank referees for their thoughtful and insightful comments. The research is supported by the PHC Volubilis program MA/14/301 “Elaboration et analyse de modèles asymptotiques en micro-magnétisme, magnéto-élasticité et électro-élasticité” with joint financial support from the French Ministry of Foreign Affairs and the Moroccan Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tilioua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadda, M., Tilioua, M. On magnetization dynamics with inertial effects. J Eng Math 88, 197–206 (2014). https://doi.org/10.1007/s10665-014-9691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9691-8

Keywords

Navigation