Skip to main content

NMR Study on Nucleic Acids

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 176 Accesses

Abstract

Nucleic acid structures and their interactions with cellular constituents continue to offer surprises despite decades of structural, biophysical, and biochemical studies. Knowledge of the structure and dynamics of nucleic acids is important not only for understanding biological mechanisms, but also for developing new therapeutics. NMR (Nuclear Magnetic Resonance) spectroscopy has been used for many years to determine the structure of nucleic acids as well as their dynamics and interactions with proteins, other nucleic acids, low molecular weight ligands, cations, and solvent molecules. Recent studies use nucleic acids to create new materials or focus on the interactions of small molecule ligands with large entities such as the ribosome, while novel in vivo methods enable probing of RNA structure and proteins that remodel nucleic acid structures, correct for chemical damage to DNA, modulate gene expression by binding to RNAs, etc. 1H NMR experiments allow determination of NOE effects and scalar coupling constants between nearby protons of nucleobases and sugar units. The low proton density of nucleic acids allows for rapid detection and identification of hydrogen bonds, which enable assessment of folding and provide constraints for defining base pair arrangements and assessing secondary structure. Sequential resonance assignment is typically followed by collection of structural restraints and structure determination at high resolution. Conventionally, the structure determination process is based on interpretation of magnetization transfer between protons through space mediated by carbon, nitrogen, and phosphorus atoms. Numerous advances including the introduction of ingenious pulse sequences and refined sample preparation strategies have enabled NMR structure determination of RNAs larger than 100-nt. These advances, coupled with improved workflows that incorporate hybrid methods of structure determination, have pushed the boundaries for studying larger, more complex, and biologically relevant systems into new dimensions. With multidimensional NMR experiments, we can measure the dynamics of constituent nuclei along the entire DNA and RNA structure and characterize functionally important motions that range from picoseconds to seconds and longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrian M, Heddi B, Phan AT (2012) NMR spectroscopy of G-quadruplexes. Methods 57(1):11–24

    Article  CAS  Google Scholar 

  • Altona C (1982a) Conformational analysis of nucleic acids. Determination of backbone geometry of single-helical RNA and DNA in aqueous solution. Recl Trav Chim Pays-Bas 101(12):413–433

    Article  CAS  Google Scholar 

  • Altona C (1982b) High resolution NMR studies of nucleic acids. NATO Adv Stud Inst 45:161

    CAS  Google Scholar 

  • Altona C, Haasnoot CAG (1980) Prediction of anti anf gauche vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings. Org Magn Reson 13(6):417–429

    Article  CAS  Google Scholar 

  • Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc 94(23):8205–8212

    Article  CAS  Google Scholar 

  • Altona C, Francke R, de Haan R, Ippel JH, Daalmans GJ, Westra Hoekzema AJA, van Wijk J (1994) Empirical group electronegativities for vicinal NMR proton-proton couplings along a C-C bond: solvent effects and reparametrization of the Haasnoot equation. Magn Reson Chem 32:670–678

    Article  CAS  Google Scholar 

  • Barnwal RP, Yang F, Varani G (2017) Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 628:42–56

    Article  CAS  Google Scholar 

  • Becette OB, Zong G, Chen B, Taiwo KM, Case DA, Dayie TK (2020) Solution NMR readily reveals distinct structural folds and interactions in doubly 13C- and 19F-labeled RNAs. Sci Adv 6(41):eabc6572

    Article  CAS  Google Scholar 

  • Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63(3):751–759

    Article  CAS  Google Scholar 

  • Boelens R, Koning TMG, Vandermarel GA, Vanboom JH, Kaptein R (1989) Iterative procedure for structure determination from proton proton NOEs using a full relaxation matrix approach – application to a DNA octamer. J Magn Reson 82(2):290–308

    CAS  Google Scholar 

  • Boisbouvier J, Brutscher B, Pardi A, Marion D, Simorre JP (2000) NMR determination of sugar puckers in nucleic acids from CSA-dipolar cross-correlated relaxation. J Am Chem Soc 122(28):6779–6780

    Article  CAS  Google Scholar 

  • Božič T, Zalar M, Rogelj B, Plavec J, Šket P (2020) Structural diversity of sense and antisense RNA hexanucleotide repeats associated with ALS and FTLD. Molecules 25(3):525

    Article  Google Scholar 

  • Chiliveri SC, Robertson AJ, Shen Y, Torchia DA, Bax A (2022) Advances in NMR spectroscopy of weakly aligned biomolecular systems. Chem Rev 122(10):9307–9330

    Article  CAS  Google Scholar 

  • Dayie TK, Olenginski LT, Taiwo KM (2022) Isotope labels combined with solution NMR spectroscopy make visible the invisible conformations of small-to-large RNAs. Chem Rev 122(10):9357–9394

    Article  CAS  Google Scholar 

  • de Leeuw FAAM, Altona C (1982) Conformational analysis of ß-D-Ribo-, ß-D-Deoxyribo-, ß-D-Arabino-, ß-D-Xylo-, and ß-D-Lyxo-nucleosides from proton-proton coupling constants. J Chem Soc Perkin Trans 2:375–384

    Article  Google Scholar 

  • Dethoff EA, Petzold K, Chugh J, Casiano-Negroni A, Al-Hashimi HM (2012) Visualizing transient low-populated structures of RNA. Nature 491(7426):724–728

    Article  CAS  Google Scholar 

  • Every AE, Russu IM (2007) Probing the role of hydrogen bonds in the stability of base pairs in double-helical DNA. Biopolymers 87(2–3):165–173

    Article  Google Scholar 

  • Feigon J, Koshlap KM, Smith FW (1995) 1H NMR spectroscopy of DNA triplexes and quadruplexes. Methods Enzymol 261:225–255

    Google Scholar 

  • Flynn PF, Kintanar A, Reid BR, Drobny G (1988) Coherence transfer in deoxyribose sugars produced by isotropic mixing: an improved intraresidue assignment strategy for the two-dimensional NMR spectra of DNA. Biochemistry 27(4):1191–1197

    Article  CAS  Google Scholar 

  • Furtig B, Richter C, Wohnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962

    Article  Google Scholar 

  • Gaffney BL, Wang C, Jones RA (1992) Nitrogen-15-labeled oligodeoxynucleotides. 4. Tetraplex formation of d[G(15N-7)GTTTTTGG] and d[T(15N7)GGGT] monitored by 1H detected 15N NMR. J Am Chem Soc 114(11):4047–4050

    Article  CAS  Google Scholar 

  • Glaser SJ, Remerowski ML, Drobny GP (1989) Complete assignment of the deoxyribose 5′/5″ proton resonances of the EcoRI DNA sequence using isotropic mixing. Biochemistry 28(4):1483–1487

    Article  CAS  Google Scholar 

  • Gorenstein DG (1994) Conformation and dynamics of DNA and protein-DNA complexes by 31P NMR. Chem Rev 94(5):1315–1338

    Article  CAS  Google Scholar 

  • Groves P, Webba da Silva M (2010) Rapid stoichiometric analysis of G-quadruplexes in solution. Chem Eur J 16(22):6451–6453

    Article  CAS  Google Scholar 

  • Haasnoot CAG, de Leeuw FAAM, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities -I. an empirical generalization of the Karplus equation. Tetrahedron 36:2783–2792

    Article  CAS  Google Scholar 

  • Haasnoot CAG, de Leeuw FAAM, de Leeuw HPM, Altona C (1981) Relationship between proton-proton NMR coupling constants and substituent electronegativities. III. Conformational analysis of proline rings in solution using a generalized Karplus equation. Biopolymers 20:1211–1245

    Article  CAS  Google Scholar 

  • Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed 53(39):10300–10314

    Article  Google Scholar 

  • Hoogstraten CG, Pardi A (1998) Measurement of carbon-phosphorus J coupling constants in RNA using spin-echo difference constant-time HCCH-COSY. J Magn Reson 133(1):236–240

    Article  CAS  Google Scholar 

  • Ippel JH, Wijmenga SS, de Jong R, Heus HA, Hilbers CW, de Vroom E, van der Marel GA, van Boom JH (1996) Heteronuclear scalar couplings in the bases and sugar rings of nucleic acids: their determination and application in assignment and conformational analysis. Magn Reson Chem 34:S156–S176

    Article  CAS  Google Scholar 

  • Kaptein R (2013) NMR studies on protein-nucleic acid interaction. J Biomol NMR 56(1):1–2

    Article  CAS  Google Scholar 

  • Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30(1):11–15

    Article  CAS  Google Scholar 

  • Kemmink J, Boelens R, Koning T, Vandermarel GA, van Boom JH, Kaptein R (1987) H-1-NMR study of the exchangeable protons of the duplex d(GCGTTGCG).D(CGCAACGC) containing a thymine photodimer. Nucl Acids Res 15(11):4645–4653

    Article  CAS  Google Scholar 

  • Koning TMG, Boelens R, Vandermarel GA, Vanboom JH, Kaptein R (1991) Structure determination of a DNA octamer in solution by NMR spectroscopy – effect of fast local motions. Biochemistry 30(15):3787–3797

    Article  CAS  Google Scholar 

  • Kotar A, Foley HN, Baughman KM, Keane SC (2020) Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 183:93–107

    Article  CAS  Google Scholar 

  • Kovačič M, Podbevšek P, Tateishi-Karimata H, Takahashi S, Sugimoto N, Plavec J (2020) Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res 48(7):3975–3986

    Article  Google Scholar 

  • Kovanda A, Zalar M, Šket P, Plavec J, Rogelj B (2015) Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins. Sci Rep 5:17944

    Article  CAS  Google Scholar 

  • Lankhorst PP, Haasnoot CAG, Erkelens C, Westerink HP, van der Marel GA, van Boom JH, Altona C (1985) Carbon-13 NMR in conformational analysis of nucleic acid fragments 4. The torsion angle distribution about the C3′-O3′ bond in DNA constituents. Nucleic Acids Res 13(3):927–942

    Article  CAS  Google Scholar 

  • Latham MR, Brown DJ, McCallum SA, Pardi A (2005) NMR methods for studying the structure and dynamics of RNA. Chembiochem 6(9):1492–1505

    Article  CAS  Google Scholar 

  • Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C (2020) 4′-fluorinated RNA: synthesis, structure, and applications as a sensitive 19F NMR probe of RNA structure and function. J Am Chem Soc 142(10):4739–4748

    Article  CAS  Google Scholar 

  • Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413

    Article  CAS  Google Scholar 

  • Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) A three-dimensional triple-resonance 1H, 13C, 31P experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116(14):6472–6473

    Article  CAS  Google Scholar 

  • Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1995) Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H, 13C, 31P triple-resonance experiment: HCP-CCH-TOCSY. J Biomol NMR 5(1):87–92

    Article  CAS  Google Scholar 

  • Marino JP, Schwalbe H, Glaser SJ, Griesinger C (1996) Determination of gamma and stereospecific assignment of H5′ protons by measurement of 2J and 3J coupling constants in uniformly C-13 labeled RNA. J Am Chem Soc 118(18):4388–4395

    Article  CAS  Google Scholar 

  • Marino JP, Schwalbe H, Griesinger C (1999) J-coupling restraints in RNA structure determination. Acc Chem Res 32(7):614–623

    Article  CAS  Google Scholar 

  • Marušič M, Schlagnitweit J, Petzold K (2019) RNA dynamics by NMR spectroscopy. Chembiochem 20(21):2685–2710

    Article  Google Scholar 

  • Pardi A, Hare DR, Wang C (1988) Determination of DNA structures by NMR and distance geometry techniques: a computer simulation. Proc Natl Acad Sci U S A 85:8785–8789

    Article  CAS  Google Scholar 

  • Pavc D, Wang B, Spindler L, Drevenšek-Olenik I, Plavec J, Šket P (2020) GC ends control topology of DNA G-quadruplexes and their cation-dependent assembly. Nucleic Acids Res 48(5):2749–2761

    Article  CAS  Google Scholar 

  • Phan AT (2000) Long-range imino proton 13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J Bomol NMR 16(2):175–178

    Article  CAS  Google Scholar 

  • Phan AT (2001) Through-bond correlation of sugar and base protons in unlabeled nucleic acids. J Magn Reson 153(2):223–226

    Article  CAS  Google Scholar 

  • Phan AT, Patel DJ (2002) A site-specific low-enrichment N-15,C-13 isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. J Am Chem Soc 124(7):1160–1161

    Article  CAS  Google Scholar 

  • Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res 34(19):5715–5719

    Article  CAS  Google Scholar 

  • Pikkemaat JA, Altona C (1996) Fine structure of the P-H5′ cross-peak in 31P-1H correlated 2D NMR spectroscopy. An efficient probe for the backbone torsion angles β and γ in nucleic acids. Magn Reson Chem 34(Special Issue):S33–S39

    Article  CAS  Google Scholar 

  • Plavec J (2012) DNA. In NMR of biomolecules: towards mechanistic systems biology. In: Bertini I, McGreevy KS, Parigi G (eds). Wiley-VCH Verlag, Singapore, pp 97–116

    Google Scholar 

  • Plavec J, Tong W, Chattopadhyaya J (1993) How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides? J Am Chem Soc 115(21):9734–9746

    Article  CAS  Google Scholar 

  • Plavec J, Thibaudeau C, Chattopadhyaya J (1996) How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides? Pure & Appl Chem 68:2137–2145

    Article  CAS  Google Scholar 

  • Richter C, Reif B, Worner K, Quant S, Marino JP, Engels JW, Griesinger C, Schwalbe H (1998) A new experiment for the measurement of nJ(C,P) coupling constants including 3J(C4i′,P-i) and 3J(C4i′,Pi+1) in oligonucleotides. J Biomol NMR 12(2):223–230

    Article  CAS  Google Scholar 

  • Rinkel LJ, Altona C (1987) Conformational analysis of the deoxyribofuranose ring in DNA by means of proton-proton coupling constants: a graphical method. J Biomol Struct Dyn 4(4):621–649

    Article  CAS  Google Scholar 

  • Schnieders R, Keyhani S, Schwalbe H, Fürtig B (2020) More than proton detection—new avenues for NMR spectroscopy of RNA. Chem Eur J 26(1):102–113

    Article  CAS  Google Scholar 

  • Schwalbe H, Marino JP, King GC, Wechselberger R, Bermel W, Griesinger C (1994) Determination of a complete set of coupling constants in 13C-labeled oligonucleotides. J Biomol NMR 4:631–644

    Article  CAS  Google Scholar 

  • Schwalbe H, Marino JP, Glaser SJ, Griesinger C (1995) Measurement of H,H-coupling constants associated with ν12 and ν3 in uniformly 13C-labeled RNA by HCC-TOCSY-CCH-E.COSY. J Am Chem Soc 117(27):7251–7252

    Article  CAS  Google Scholar 

  • Sket P, Crnugelj M, Kozminski W, Plavec J (2004) 15NH4+ ion movement inside d(G4T4G4)2 G-quadruplex is accelerated in the presence of smaller Na+ ions. Org Biomol Chem 2(14):1970–1973

    Google Scholar 

  • Sket P, Crnugelj M, Plavec J (2005) Identification of mixed di-cation forms of G-quadruplex in solution. Nucleic Acids Res 33(11):3691–3697

    Article  CAS  Google Scholar 

  • Šket P, Pohleven J, Kovanda A, Štalekar M, Župunski V, Zalar M, Plavec J, Rogelj B (2015) Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging 36(2):1091–1096

    Article  Google Scholar 

  • Sklenar V, Bax A (1987) Measurement of 1H-31P NMR coupling constants in double-stranded DNA fragments. J Am Chem Soc 109(24):7525–7526

    Article  CAS  Google Scholar 

  • Sklenar V, Miyashiro H, Zon G, Miles HT, Bax A (1986) Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett 208(1):94–98

    Article  CAS  Google Scholar 

  • Szyperski T, Ono A, Fernandez C, Iwai H, Tate S, Wuthrich K, Kainosho M (1997) Measurement of 3JC2′P scalar couplings in a 17 kDa protein complex with 13C,15N-labeled DNA distinguishes the B-I and B-II phosphate conformations of the DNA. J Am Chem Soc 119(41):9901–9902

    Article  CAS  Google Scholar 

  • Takahashi S, Kotar A, Tateishi-Karimata H, Bhowmik S, Wang Z-F, Chang T-C, Sato S, Takenaka S, Plavec J, Sugimoto N (2021) Chemical modulation of DNA replication along G-quadruplex based on topology-dependent ligand binding. J Am Chem Soc 143(40):16458–16469

    Article  CAS  Google Scholar 

  • Tisne C, Simenel C, Hantz E, Schaeffer F, Delepierre M (1996) Backbone conformational study of a non-palindromic 16 base pair DNA duplex exploring 2D 31P-1H heteronuclear inverse spectroscopy: assignment of all NMR phosphorus resonances and measurement of 3J31P-1H3′ coupling constants. Magn Reson Chem 34:S115–S124

    Article  CAS  Google Scholar 

  • van Wijk J, Huckriede BD, Ippel JH, Altona C (1992) Furanose sugar conformations in DNA from NMR coupling constants. Methods Enzymol 211:286–306

    Article  Google Scholar 

  • Webba da Silva M (2007) NMR methods for studying quadruplex nucleic acids. Methods 43:264–277

    Article  CAS  Google Scholar 

  • Webba da Silva M, Trajkovski M, Sannohe Y, Hessari NM, Sugiyama H, Plavec J (2009) Design of a G-quadruplex topology through glycosidic bond angles. Angew Chem Int Ed 48(48):9167–9170

    Article  CAS  Google Scholar 

  • Weber PL, Drobny G, Reid BR (1985) 1H NMR studies of Lambda-Cro repressor. 1. Selective optimization of two-dimensional relayed coherence transfer spectroscopy. Biochemistry 24(17):4549–4552

    Article  CAS  Google Scholar 

  • Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387

    Article  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Book  Google Scholar 

  • Xue Y, Kellogg D, Kimsey IJ, Sathyamoorthy B, Stein ZW, McBrairty M, Al-Hashimi HM (2015) Characterizing RNA excited states using NMR relaxation dispersion. Methods Enzymol S A Woodson and F H T Allain 558:39–73

    CAS  Google Scholar 

  • Zhu LM, Reid BR, Drobny GP (1995) Errors in measuring and interpreting values of coupling constants J from PE.COSY experiments. J Magn Res A 115(2):206–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the colleagues named in the cited papers from his laboratory at Slovenian NMR center, especially Drs. Trajkovski, Šket, Lenarčič Živković, Kocman, Kotar, Marušič, Podbevšek, Pavc, Toplishek, and Cevec. The help of Klemen Pečnik, Dr. Marko Trajkovski, Matic Kovačič, and Dr. Primož Šket in the preparation of the artwork is gratefully acknowledged. This work was supported partly by the Slovenian Research Agency (ARRS, grants P1-0242 and J1-1704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Plavec .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Plavec, J. (2022). NMR Study on Nucleic Acids. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics