Skip to main content
Log in

Investigation of heavy metal contamination and associated health risks in groundwater sources of southwestern Punjab, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human body exposure to various toxic and non-toxic heavy metals in groundwater is a significant health concern, especially in developing countries. The present study was planned and carried out to appraise the potential health risks of eight heavy metals (Mn, Co, Cu, As, Se, Cd, Hg, and Pb) in different water sources of the Mansa and Muktsar districts of Punjab. The measurements of heavy metals were performed using the inductively coupled plasma mass spectrometry (ICPMS) technique. The health (carcinogenic and non-carcinogenic) risks and doses (ingestion and dermal) associated with exposure to heavy metals in water were estimated from the measured concentrations using USEPA guidelines. The average concentrations of heavy metals were observed in the order of Mn (13.93) > Cu (13.12) > Se (4.14) > As (3.28) > Hg (3.27) > Pb (1.29) > Co (0.20) > Cd (0.10) μg L−1. The results show that the Hg, Pb, As, and Se concentrations are above the guideline values of the World Health Organization (WHO) in 10.34%, 3.45%, 6.90%, and 6.90% locations, respectively. The high values of these heavy metals may be due to geogenic anthropogenic activities. The hazard quotients (non-carcinogenic risk) for ingestion and dermal exposures were observed in the range of 0.32–3.79 and 8.05 × 10−6–1.34 × 10−4, respectively. On the other hand, the carcinogenic health risks due to ingestion and dermal exposure were observed to be 0.02–0.38 and 6.67 × 10−8–1.15 × 10−6, respectively. The results of this study will be helpful to the drinking water supplying agencies, water resource development authorities, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated and analysed in this study are available from the corresponding author upon reasonable request.

References

  • Agbasi, J. C., & Egbueri, J. C. (2022). Assessment of PTEs in water resources by integrating HHRISK code, water quality indices, multivariate statistics, and ANNs. Geocarto International. https://doi.org/10.1080/10106049.2022.2034990

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological profile for Cobalt. US Department of Health and Human Services, Public Health Service, Division of Toxicology 1600, Atlanta, GA 30333.

  • All – India Report on Agriculure Census (AIRAC) 198–1986. (1992). Department of Agriculture and Cooperation, Ministry of Agriculture, Govt. of India, New Delhi.

  • APHA. (2017). Standard Methods for the Examination of Water and Wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver. Scientific Research Publishing.

  • Ayejoto, D. A., Agbasi, J. C., Egbueri, J. C., & Echefu, K. I. (2022). Assessment of oral and dermal health risk exposures associated with contaminated water resources: An update in Ojoto area, southeast Nigeria. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.2023515

    Article  Google Scholar 

  • Bajwa, B., Kumar, S., Singh, S., Sahoo, S., & Tripathi, R. (2017). Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. Journal of Radiation Research and Applied Sciences, 10, 13–19. https://doi.org/10.1016/j.jrras.2015.01.002

    Article  CAS  Google Scholar 

  • Bal, M. S., Bodal, V. J., Kaur, J., Kaur, M., & Sharma, S. (2015). Patterns of cancer: A study of 500 Punjabi patients. Asian Pacific Journal of Cancer Prevention, 16(12), 5107–5110.

    Article  Google Scholar 

  • Bangotra, P., Mehra, R., Jakhu, R., Kaur, K., Pandit, P., & Kanse, S. (2018). Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. Journal of Geochemical Exploration, 184, 304–310.

    Article  CAS  Google Scholar 

  • Bangotra, P., Mehra, R., Kaur, K., Kanse, S., Mishra, R., Sahoo, B.K. (2015). Estimation of EEC, Unattached Fraction and Equilibrium factor for the assessment of Radiological dose using Pin hole cup dosimeters and deposition based progeny sensors. Journal of Environmental Radioactivity148, 67–73.

  • Bangotra, P., Mehra, R., Jakhu, R., Pandit, P., & Prasad, M. (2019). Quantification of an alpha flux based radiological dose from seasonal exposure to 222Rn, 220Rn and their different EEC species. Scientific Reports, 9(1), 1–15.

    Article  CAS  Google Scholar 

  • Bangotra, P., Sharma, M., Mehra, R., Jakhu, R., Singh, A., Gautam, A. S., & Gautam, S. (2021). A systematic study of uranium retention in human organs and quantification of radiological and chemical doses from uranium ingestion. Environmental Technology and Innovation, 21, 101360.

    Article  CAS  Google Scholar 

  • Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. Journal of Environmental and Public Health, 2012, 460508.

    Article  Google Scholar 

  • Biswas, A., Bhattacharya, P., Mukherjee, A., Nath, B., Alexanderson, H., Kundu, A. K., & Jacks, G. (2014). Shallow hydro stratigraphy in an arsenic affected region of Bengal Basin: Implication for targeting safe aquifers for drinking water supply. Science of the Total Environment, 485, 12–22.

    Article  Google Scholar 

  • Bost, M., Hodart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107–115.

    Article  CAS  Google Scholar 

  • Bureau of Indian Standards (BIS). (1991). http://www.slideshare.net/ishan_trivedi2005/permissible-limitsof-water-pollutants-in-drinking-water

  • Bureau of Indian Standards (BIS). (2012). Bureau of Indian Standards. New Delhi, 2–3. http://cgwb.gov.in/Documents/WQ-standards.pdf

  • Centre for Science and Environment study. (2004). The lead: Where poison flows in veins. http://www.rainwaterharvesting.org/cse/programme/media/feature_08june05.htm

  • Chaudhary, R. S. (1971). Nahan—a problematic horizon of NW Himalayas. Journal Geological Society India, 12(4), 373–377.

    Google Scholar 

  • Chung, J. Y., Yu, S. D., & Hong, Y. S. (2014). Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 253–257.

    Article  Google Scholar 

  • Debnath, B., Singh, W. S., & Manna, K. (2019). Sources and toxicological effects of lead on human health. India Journal Medical Specialties, 10, 66–71.

  • Egbueri, C., & Agbasi, J. C. (2022a). Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: Comparing the performances of different algorithms. Environmental Science and Pollution Research, 29, 38346–38373. https://doi.org/10.1007/s11356-022-18520-8

    Article  CAS  Google Scholar 

  • Egbueri, J. C., & Agbasi, J. C. (2022b). Combining data-intelligent algorithms for the assessment and predictive modeling of groundwater resources quality in parts of southeastern Nigeria. Environmental Science and Pollution Research International, 29(38), 57147–57171. https://doi.org/10.1007/s11356-022-19818-3

    Article  Google Scholar 

  • Egbueri, J. C., Unigwe, C. O., Agbasi, J. C., & Nwazelibe, V. E. (2022). Indexical and artificial neural network modeling of the quality, corrosiveness, and encrustation potential of groundwater in industrialized metropolises. Southeast Nigeria Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02687-8

    Article  Google Scholar 

  • Etuk, M. N., Igwe, O., & Egbueri, J. C. (2022). An integrated geoinformatics and hydrogeological approach to delineating groundwater potential zones in the complex geological terrain of Abuja, Nigeria. Modeling Earth System Environmenthttps://doi.org/10.1007/s40808-022-01502-7

  • Ghaderpoori, M., Kamarehie, B., Jafari, A., Ainejaad, A. A., Hashempour, Y., Saghi, M. H., Yousefi, M., Conti, G. A., Mohammadi, A. A., Ghaderpoori, A., & Ferrante, M. (2020). Health risk assessment of heavy metals in cosmetic products sold in Iran: The Monte Carlo simulation. Environmental Science and Pollution Research, 27, 7588–7595. https://doi.org/10.1007/s11356-019-07423-w

    Article  Google Scholar 

  • Hedberg, Y. S., Wei, Z., & Chevez, F. M. (2019). Chromium (III), chromium (VI) and cobalt release from leathers produced in Nicaragua. Contact Dermatitis, 80(3), 149–155.

    Article  CAS  Google Scholar 

  • IARC. (2012). Agents classified by the IARC monographs, Volumes 1–104. IARC Monographs, 7, 1–25.

    Google Scholar 

  • ICRP. (2017). Occupational intakes of radionuclides: Part 3. ICRP Publication - 137, Ann. ICRP 46 (3/4).

  • ICRP. (2019). Occupational intakes of radionuclides: Part 4. ICRP Publication – 141, Ann. ICRP 48 (2/3).

  • Karanveer Bala, R., & Das, D. (2022). Geochemical and health risk assessment of potentially toxic trace elements and nitrate via groundwater in agro-ecosystem of alluvial plain Punjab, India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2022.2113734

  • Karmakar, B., Singh, M., Choudhary, B., Singh, S. K., Egbueri, J. C., Gautam, S. K., & Rawat, K. S. (2021). Investigation of the hydrogeochemistry, groundwater quality, and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics. https://doi.org/10.1080/15275922.2021.2006363

    Article  Google Scholar 

  • Kay, M., & Dimitrakopoulos, R. (2000). Integrated interpolation methods for geophysical data: Applications to mineral exploration. Natural Resources Research, 9(1), 53–64.

    Article  Google Scholar 

  • Kieliszek, M. (2019). Selenium-Fascinating microelement, properties and sources in Food. Molecules, 24(7), 1298.

    Article  CAS  Google Scholar 

  • Kundu, D., & Sood, A. (2019). Assessment of ground water quality for irrigation purpose in Mansa district (Punjab, India) through GIS approach. Journal of Agri Search, 6, 139–145. https://doi.org/10.21921/jas.v6i03.16216

  • Li, L., & Yang, X. (2018). The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxidative Medicine and Cellular Longevity, 2018, 7580707.

    Article  Google Scholar 

  • Ma, J., & Betts, N. M. (2000). Zinc and copper intakes and their major food sources for older adults in the 1994–96 continuing survey of food intakes by individuals (CSFII). Journal of Nutrition, 130(11), 2838–2843.

    Article  CAS  Google Scholar 

  • Marufi, N., Conti, O. G., Ahmadinejad, P., Ferrante, M., & Mohammadi, A. A. (2022). Carcinogenic and non-carcinogenic human health risk assessments of heavy metals contamination in drinking water supplies in Iran: A systematic review. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2022-0060

    Article  Google Scholar 

  • Mehra, R., Bangotra, P., & Kaur, K. (2015a). Rn-222 and Rn-220 levels of Mansa and Muktsar district of Punjab India. Frontiers in Environmental Science, 1, 3.

    Google Scholar 

  • Mehra, R., Bangotra, P., Kaur, K., Kanse, S., & Mishra, R. (2015b). 222Rn and 220Rn levels of Mansa and Muktsar district of Punjab India. Frontiers in Environmental Science, 3, 37.

    Article  Google Scholar 

  • Mehra, R., Kaur, K., & Bangotra, P. (2016). Annual effective dose of radon due to exposure in indoor air and groundwater in Bathinda district of Punjab. Indoor Built Environment, 25(5), 848–856.

    Article  CAS  Google Scholar 

  • Mittal, S., Kaur, G., & Vishwakarma, G. S. (2014). Effects of environmental pesticides on the health of rural communities in the Malwa Region of Punjab, India: A review. Human and Ecological Risk Assessment, 20, 366–387.

    Article  CAS  Google Scholar 

  • Moghaddam, V. K., Latifi, P., Darrudi, R., Askari, S. G., Mohammadi, A. A., Marufi, N., & Javan, S. (2022). Heavy metal contaminated soil, water, and vegetables in northeastern Iran: Potential health risk factors. Journal of Environmental Health Science and Engineering, 20, 65–77. https://doi.org/10.1007/s40201-021-00756-0

    Article  CAS  Google Scholar 

  • Mohammadi, A., Yousefi, M., Soltani, J., Ahangar, A. G., & Javan, S. (2018). Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments. Environmental Science and Pollution Research, 25, 30315–30324. https://doi.org/10.1007/s11356-018-3026-7

    Article  CAS  Google Scholar 

  • Mousavi, S. R., Shahsavari, M., & Rezaei, M. (2011). A general overview on manganese (Mn) importance for crops production. Australian Journal of Basic Applied Sciences, 5(9), 1799–1803.

  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10, 184.

    Article  CAS  Google Scholar 

  • Omeka, M. E., Egbueri, J. C., & Unigwe, C. O. (2022). Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical and statistical modelling. Arabian Journal of Geosciences, 15(13). https://doi.org/10.1007/s12517-022-10514-7

  • Onjia, A., Huang, X., Trujillo González, J. M., & Egbueri, J. C. (2022). Editorial: Chemometric approach to distribution, source apportionment, ecological and health risk of trace pollutants. Frontiers in Environmental Science, 10, 1107465. https://doi.org/10.3389/fenvs.2022.1107465

    Article  Google Scholar 

  • Pandit, P., Mangala, P., Saini, A., Bangotra, P., Kumar, V., Mehra, R., & Ghosh, D. (2020). Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the Siwalik region (India). Chemosphere, 254, 126857.

    Article  CAS  Google Scholar 

  • Pascoe, E. (1980–2016). A manual of the geology of India and Burma, 7. Govt. of India, Press, Calcutta.

  • Pophare, A. M., Lamsoge, B. R., Katpatal, Y. B., & Nawale, V. P. (2014). Impact of over-exploitation on groundwater quality: A case study from WR-2 Watershed, India. Journal Earth System Science, 123, 1541–1566.

    Article  Google Scholar 

  • Prasad, M., Aswal, R. S., Joshi, A., Anil, K. G., & Ramola, R. C. (2022). A systematic study on occurrence, risk estimation and health implications of heavy metals in potable water of Garhwal Himalaya India. Scientific Reports, 12, 20419.

    Article  CAS  Google Scholar 

  • Prasad, M., Kumar, G. A., Sahoo, S. K., et al. (2019). Health risks associated with the exposure to uranium and heavy metals through potable groundwater in Uttarakhand state of India. Journal Radioanalytical Nuclear Chemistry, 319, 13–21.

    Article  CAS  Google Scholar 

  • Rice, K. M., Walker, E. M., Wu, E., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74–83.

    Article  Google Scholar 

  • Saleh, H. N., Panahande, M., Yousefi, M., Asghari, F. B., Conti, G. O., Talaee, E., & Mohammadi, A. A., (2019). Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur Plain, Iran. Biological Trace Element Research. https://doi.org/10.1007/s12011-018-1516-6

  • Shankar, S., & Shankar, U. (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014, 304524.

    Article  Google Scholar 

  • Sharma, H., Rawal, N., & Mathew, B. B. (2015). The characteristics, toxicity and effects of cadmium. International Journal Nanotechnology and Nanoscience, 3, 1–9.

    Google Scholar 

  • Sharma, R., & Dutta, A. A. (2017). Study of heavy metal pollution in groundwater of Malwa Region of Punjab, India: Current status, pollution and its potential health risk. International Journal Engineering Research Applications, 7(3), 81–91.

    Article  Google Scholar 

  • Sharma, T., Litoria, P. K., Bajwa, B. S., & Kaur, I. (2021). Appraisal of groundwater quality and associated risks in Mansa district (Punjab, India). Environmental Monitoring and Assessment, 193, 159–179.

    Article  CAS  Google Scholar 

  • Shekhar, C., Rohilla, K., Kumar, P., Sihag, P., & Sood, A. (2020). Spatial variability of ground water quality for irrigation of Mansa DistrictPunjab. International Journal of Agricultural Sciences, 12(2), 9448–9450.

    CAS  Google Scholar 

  • Shomar, B., & Rashkeev, S. N. (2021). A comprehensive risk assessment of toxic elements in international brands of face foundation powders. Environmental Research, 192, 110274.

    Article  CAS  Google Scholar 

  • Singh, K. P., Kishore, N., Tuli, N., Loyal, R. S., Sharma, M., Dhanda, D., Kaur, M., & Taak, J. K. (2015). Observations on occurrence of arsenic in groundwater especially in parts of South-West Punjab, In Workshop: Arsenic contamination in groundwater, CGWB (Chandigarh), Ministry of Water Resources, River Development and Ganga Rejuvenation, Govt. of India, pp. 45–52.

  • Singh, M. C. (2019). Groundwater pollution, causes, assessment methods and remedies for mitigation: A special attention to Indian Punjab. In: Kumar, V., Kumar, R., Singh, J. and Kumar, P. (eds) Contaminants in agriculture and environment: Health risks and remediation, Volume 1, Agro Environ Media, Haridwar, India, pp. 148–172. https://doi.org/10.26832/AESA-2019-CAE-0152-012

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments India. Ecotoxicology Environmental Safety, 84, 117–124.

    Article  CAS  Google Scholar 

  • Unigwe, C. O., Egbueri, J. C., & Omeka, M. E. (2022). Geospatial and statistical approaches to nitrate health risk and groundwater quality assessment of an alluvial aquifer in SE Nigeria for drinking and irrigation purposes. Journal of the Indian Chemical Society, 99(6), 2022. https://doi.org/10.1016/j.jics.2022.100479

    Article  CAS  Google Scholar 

  • US EPA. (2004). Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. US EPA, 2004, 1.

  • US EPA. (2009). Risk assessment guidance for superfund (RAGS): Part F.

  • US EPA. (2016). Guidelines for drinking-water quality, Edition of the Drinking-Water Standards and Health Advisories EPA 822-S-12–001.

  • USEPA. (2012a). Drinking Water Contaminants. US Environmental Protection Agency Washington, DC. https://www.epa.gov/dwreginfo/drinking-water-regulations

  • USEPA. (2012b). Drinking Water Contaminants. US Environmental Protection Agency Washington, DC. https://www.epa.gov/dwreginfo/drinking-water-regulations

  • USEPA. (2015). Drinking Water Contaminants .US Environmental Protection Agency Washington, DC. https://www.epa.gov/dwreginfo/drinking-water-regulations

  • USEPA (United States Environmental Protection Agency). (2015). Risk based screening table—Generic, summary table (2015). http://www.epa.gov/risk/risk-based-screening-tablegeneric-tables/

  • Wadia, D. N. (1979). Geology of India (p. 508). Tata McGraw Hill Publishing Co Ltd.

    Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). World Health Organization.

    Google Scholar 

  • Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2009). Prelimnary risk assessment of trace metal pollution in surface water from Yangtze river in Nanjing section China. Bulletin Environmental Contamination and Toxicology, 82, 405–409.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pargin Bangotra conceptualized the study. Pargin Bangotra, Mukesh Prasad, Rajan Jakhu, and Rohit Mehra carried out experimental work. Pargin Bangotra, Mukesh Prasad, R. S. Aswal, Anshumali Ashish, and Zainab Mushtaq performed the statistical analysis of the data. Pargin Bangotra, Mukesh Prasad, and R. S. Aswal wrote the manuscript.

Corresponding authors

Correspondence to Pargin Bangotra or Mukesh Prasad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangotra, P., Jakhu, R., Prasad, M. et al. Investigation of heavy metal contamination and associated health risks in groundwater sources of southwestern Punjab, India. Environ Monit Assess 195, 367 (2023). https://doi.org/10.1007/s10661-023-10959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10959-7

Keywords

Navigation