Skip to main content

Advertisement

Log in

Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The nonlinear groundwater level fluctuations depend on the interaction of many factors such as evapotranspiration, precipitation, groundwater abstraction, and hydrogeological characteristics, making groundwater level prediction a complex task. Groundwater level changes are among the most critical issues in water resource management, which can be predicted to effectively provide management solutions to conserve renewable water resources. Understanding the aquifer status using numerical models is time-consuming and also is associated with inherent uncertainty; therefore, in recent decades, the application of artificial intelligence methods to predict water table fluctuations has significantly gained momentum. In this study, artificial neural network (ANN), fuzzy logic (FL), adaptive neuro-fuzzy inference system (ANFIS), and least square support vector machine (SVM) methods were utilized to predict groundwater level (GWL) with 1-, 2-, and 3-month lead time in Tehran-Karaj plain. Several input scenarios were developed considering groundwater levels, average temperature, total precipitation, total evapotranspiration, and average river flow on a monthly interval. The four error criteria, the correlation coefficient (R), root mean squared error (RMSE), Nash–Sutcliffe efficiency (NSE), and mean absolute error (MAE), were the basis to evaluate the models. Results showed that all the applied methods could provide acceptable GWL prediction, but the ANFIS was the most accurate. However, the ANFIS model showed slightly better performance by yielding R = 0.98 for the training stage and R = 0.98 for the testing stage in the P84 observation well and the second combination of inputs and 1-month lead time. The outcomes also revealed that all the approaches mentioned above could appropriately predict GWL for the leading time of 1 and 2 months, but the models provided unsatisfactory results for a 3-month leading time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  • Afan, H. A., Osman, I. A., & A., Essam, Y., Ahmed, A. N., Huang, Y. F., Kisi, O., & El-Shafie, A. (2021). Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques. Engineering Applications of Computational Fluid Mechanics, 15(1), 1420–1439.

    Article  Google Scholar 

  • Azizi, F., Vadiati, M., Moghaddam, A. A., Nazemi, A., & Adamowski, J. (2019). A hydrogeological-based multi-criteria method for assessing the vulnerability of coastal aquifers to saltwater intrusion. Environmental Earth Sciences, 78(17), 1–22.

    Article  CAS  Google Scholar 

  • Bahmani, R., & Ouarda, T. B. (2021). Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology, 595, 125659.

    Article  Google Scholar 

  • Banadkooki, F. B., Ehteram, M., Ahmed, A. N., Teo, F. Y., Fai, C. M., Afan, H. A., & El-Shafie, A. (2020). Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm. Natural Resources Research, 29(5), 3233–3252.

    Article  Google Scholar 

  • Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147–1158.

    Article  Google Scholar 

  • Behzad, M., Asghari, K., & Coppola, E. A. (2009). Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computer in Civil Engineering, 24(5), 408–413.

    Article  Google Scholar 

  • Bisht, D. C. S., Raju, M., & Joshi, M. (2009). Simulation of water table elevation fluctuation using fuzzy-logic and ANFIS. Computer Modelling and New Technologies, 13(2), 16–23.

  • Chandramouli, V., Lingireddy, S., & Brion, G. M. (2007). Robust training termination criterion for back propagation ANNs applicable to small data sets. Journal of Computing in Civil Engineering, 21(1), 39–46.

    Article  Google Scholar 

  • Chang, F. J., & Chang, Y. T. (2006). Adaptive neuron-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1), 1–10.

    Article  Google Scholar 

  • Dehghani, R., & Torabi Poudeh, H. (2021). Application of novel hybrid artificial intelligence algorithms to groundwater simulation. International Journal of Environmental Science and Technology, 1–18.

  • El Bilali, A., Taleb, A., & Brouziyne, Y. (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, 106625.

    Article  Google Scholar 

  • Ghazi, B., Jeihouni, E., & Kalantari, Z. (2021). Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain. Iran. Arabian Journal of Geosciences, 14(2), 1–12.

    Google Scholar 

  • Gholami, V. C. K. W., Chau, K. W., Fadaee, F., Torkaman, J., & Ghaffari, A. (2015). Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology, 529, 1060–1069.

    Article  Google Scholar 

  • Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall PTR.

  • Jafari, M. M., Ojaghlou, H., Zare, M., & Schumann, G. J. P. (2021). Application of a novel hybrid wavelet-ANFIS/fuzzy c-means clustering model to predict groundwater fluctuations. Atmosphere, 12(1), 9.

    Article  Google Scholar 

  • Jain, S. K., Das, A., & Srivastava, D. K. (1999). Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management, 125(5), 263–271.

    Article  Google Scholar 

  • Jang, J. S. R. (1997). ANFIS: Adaptive Neuro-Fuzzy based Inference Systems IEEI Trans On System Man and Cybernetics.

  • Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B., & Donohoe, A. (2015). Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. Hydrogeology Journal, 23(1), 121–141.

    Article  Google Scholar 

  • Khedri, A., Kalantari, N., & Vadiati, M. (2020). Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply, 20(3), 909–921.

    Article  Google Scholar 

  • Khoshand, A. (2021). Application of artificial intelligence in groundwater ecosystem protection: A case study of Semnan/Sorkheh plain, Iran. Environment, Development and Sustainability, 1–15.

  • Kişi, Ö. (2009). Evolutionary fuzzy models for river suspended sediment concentration estimation. Journal of Hydrology, 372(1–4), 68–79.

    Article  Google Scholar 

  • Lallahem, S., Mania, J., Hani, A., & Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1–4), 92–111.

    Article  Google Scholar 

  • Malakar, P., Sarkar, S., Mukherjee, A., Bhanja, S., & Sun, A. Y. (2021). Use of machine learning and deep learning methods in groundwater. In Global groundwater pp 545–557. Elsevier.

  • Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., & Akib, S. (2015). Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: a comparative study. Natural Hazards, 1–15.

  • Mohanty, S., Jha, M. K., Kumar, A., & Panda, D. K. (2013). Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Surua Inter-basin of Odisha, India. Journal of Hydrology, 495, 38–51.

    Article  Google Scholar 

  • Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K., & Sudheer, K. P. (2015). Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resources Management, 29(15), 5521–5532.

    Article  Google Scholar 

  • Mohapatra, J. B., Jha, P., Jha, M. K., & Biswal, S. (2021). Efficacy of machine learning techniques in predicting groundwater fluctuations in agro-ecological zones of India. Science of the Total Environment, 785, 147319.

    Article  CAS  Google Scholar 

  • Monjezi, M., Mohamadi, H. A., Barati, B., & Khandelwal, M. (2014). Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. Arabian Journal of Geosciences, 7(2), 505–511.

    Article  Google Scholar 

  • Nadiri, A. A., Fijani, E., Tsai, F. T. C., & Asghari Moghaddam, A. (2013). Supervised committee machine with artificial intelligence for prediction of fluoride concentration. Journal of Hydroinformatics, 15(4), 1474–1490.

    Article  CAS  Google Scholar 

  • Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1–2), 52–66.

    Article  Google Scholar 

  • Nhu, V. H., Rahmati, O., Falah, F., Shojaei, S., Al-Ansari, N., Shahabi, H., & Ahmad, B. B. (2020). Mapping of groundwater spring potential in karst aquifer system using novel ensemble bivariate and multivariate models. Water, 12(4), 985.

    Article  Google Scholar 

  • Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Application of hybrid wavelet artificial intelligent models in hydrology: A review. Journal of Hydrology, 514, 358–377.

    Article  Google Scholar 

  • Pandey, K., Kumar, S., Malik, A., & Kuriqi, A. (2020). Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh. India. Sustainability, 12(21), 8932.

    Article  Google Scholar 

  • Phong, T. V., Pham, B. T., Trinh, P. T., Ly, H. B., Vu, Q. H., Ho, L. S., & Prakash, I. (2021). Groundwater potential mapping using GIS‐based hybrid artificial intelligence methods. Groundwater.

  • Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 572, 336–351.

    Article  Google Scholar 

  • Remesan, R., & Mathew, J. (2016). Hydrological data driven modelling. Springer International Publishing.

  • Rezaei, K., & Vadiati, M. (2020). A comparative study of artificial intelligence models for predicting monthly river suspended sediment load. Journal of Water and Land Development.

  • Rezaei, K., Pradhan, B., Vadiati, M., & Nadiri, A. A. (2021). Suspended sediment load prediction using artificial intelligence techniques: Comparison between four state-of-the-art artificial neural network techniques. Arabian Journal of Geosciences, 14(3), 1–13.

    Article  Google Scholar 

  • Samani, S. (2021). Analyzing the groundwater resources sustainability management plan in Iran through comparative studies. Groundwater for Sustainable Development, 12, 100521.

  • Samani, S., & Moghaddam, A. A. (2015). Hydrogeochemical characteristics and origin of salinity in Ajabshir aquifer, East Azerbaijan, Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 48(3–4), 175–189.

  • Samani, S., Moghaddam, A. A., & Ye, M. (2018a). Investigating the effect of complexity on groundwater flow modeling uncertainty. Stochastic Environmental Research and Risk Assessment, 32(3), 643–659.

    Article  Google Scholar 

  • Samani, S., Ye, M., Zhang, F., Pei, Y. Z., Tang, G. P., Elshall, A., & Moghaddam, A. A. (2018b). Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Science and Engineering, 11(2), 89–100.

    Article  Google Scholar 

  • Samani, S., Moghaddam, H. K., & Zareian, M. J. (2021). Evaluating time series integrated groundwater sustainability: A case study in Salt Lake catchment. Iran. Environmental Earth Sciences, 80(17), 1–13.

    Google Scholar 

  • Sanikhani, H., & Kisi, O. (2012). River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resources Management, 26(6), 1715–1729.

  • Sapitang, M., Ridwan, W. M., Ahmed, A. N., Fai, C. M., & El-Shafie, A. (2021). Groundwater level as an input to monthly predicting of water level using various machine learning algorithms. Earth Science Informatics, 14(3), 1269–1283.

    Article  Google Scholar 

  • Sharafati, A., Asadollah, S. B. H. S., & Neshat, A. (2020). A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591, 125468.

    Article  Google Scholar 

  • Shiri, J., Kisi, O., Yoon, H., Lee, K. K., & Nazemi, A. H. (2013). Prediction groundwater level fluctuations with meteorological effect implications, a comparative study among soft computing techniques. Computer and Geoscience, 56, 32–44.

    Article  Google Scholar 

  • Shirmohammadi, B., Vafakhah, M., Moosavi, V., & Moghaddamnia, A. (2013). Application of several data-driven techniques for predicting groundwater level. Water Resources Management, 27(2), 419–432.

    Article  Google Scholar 

  • Shu, C., & Ouarda, T. B. M. J. (2008). Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349(1), 31–43.

  • Suryanarayana, C., Sudheer, C., Mahammood, V., & Panigrahi, B. K. (2014). An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324–335.

    Article  Google Scholar 

  • Suykens, J. A. De Brabanter, J., Lukas, L., Vandewalle, J. (2002). Weighted least squares support vector machines: robustness and spare approximation. Neurocomputing, 48(1), 85–105.

  • Taormina, R., Chau, K. W., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676.

    Article  Google Scholar 

  • Vadiati, M., Nalley, D., Adamowski, J., Nakhaei, M., & Asghari-Moghaddam, A. (2019). A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices. Journal of Water and Land Development.

  • Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.

  • Yoon, H., Jon, C. S., Hyun, Y., Bae, O. G., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396, 128–138.

    Article  Google Scholar 

  • Yu, H., Wen, X., Feng, Q., Deo, R. C., Si, J., & Wu, M. (2018). Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions. Northwest China. Water Resources Management, 32(1), 301–323.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information. Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zare, M., & Koch, M. (2018). Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-Environment Research, 18, 63–76.

    Article  Google Scholar 

  • Zhang, A., Winterle, J., & Yang, C. (2020). Performance comparison of physical process-based and data-driven models: A case study on the Edwards Aquifer, USA. Hydrogeology Journal, 28(6), 2025–2037.

    Article  Google Scholar 

  • Zhou, T., Wang, F., & Yang, Z. (2017). Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. Water, 9(10), 781.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Vadiati.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadiati, M., Rajabi Yami, Z., Eskandari, E. et al. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Environ Monit Assess 194, 619 (2022). https://doi.org/10.1007/s10661-022-10277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10277-4

Keywords

Navigation