Skip to main content

Advertisement

Log in

Application of ensemble fuzzy weights of evidence-support vector machine (Fuzzy WofE-SVM) for urban flood modeling and coupled risk (CR) index for ward prioritization in NCT Delhi, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

NCT Delhi, the heart of India, remains vulnerable to urban flooding from July to October, when southwest monsoon is active over its area of 1483 km2. To address the paucity of a comprehensive susceptibility map, this study employs urban flood modeling to quantify the spatial sensitivity of NCT Delhi to water logging. Fifteen flood related variables, including elevation, slope, slope aspect, profile curvature, plan curvature, Topographic Wetness Index (TWI), Stream Power Index (SPI), Topographic Roughness Index (TRI), geology, soil type, land use/land cover (LU/LC), Modified Fournier Index (MFI), water level depth, distance from storm drain, and distance from the Yamuna were analyzed. The study applies the data-driven form of ensemble fuzzy weights of evidence-support vector machine (Fuzzy WofE-SVM). The first-level flood susceptibility map was generated using Fuzzy WofE technique. Using this map and secondary data on water logging locations identified by the Delhi Traffic Police, flood inventory datasets were created. To execute the ensemble methodology, SVM was sequentially integrated with the Fuzzy WofE technique. Urban flood susceptibility zonation maps of NCT Delhi were created using four SVM kernel functions: linear (LN), polynomial (PL), radial basis function (RBF), and sigmoid (SIG). The kernel parameters i.e., regularization parameter (C), kernel width (γ) and degree (d) were optimized using python-mediated k-fold cross validation method. Area under the receiver operating characteristic curve (AUROC) analysis validated that all the SVM kernels yield excellent success and prediction rates. However, in terms of success rate, RBF (AUROC = 0.976) outperforms PL (AUROC = 0.968), LN (AUROC = 0.966), and SIG (AUROC = 0.956). With an AUROC of 0.966, RBF again outperforms SIG (AUROC = 0.964), LN (AUROC = 0.955), and PL (AUROC = 0.952) in terms of predictive performance. The novel Coupled Risk (CR) Index has been developed and presented in this study to increase the applicability of flood modeling by translating macro-hazard perspectives into a polished vulnerability scenario of administrative convenience. Spatial analysis of hazard intensity and endangered population using this novel tool would benefit take specific actions for disaster management by prioritizing wards for mitigation strategy planning and implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdalla, F. (2012). Mapping of groundwater prospective zones using remote sensing and GIS techniques: A case study from the central eastern desert. Egypt Journal of African Earth Sciences, 70, 8–17. https://doi.org/10.1016/j.jafrearsci.2012.05.003

    Article  CAS  Google Scholar 

  • Adhikari, S. (1992). Fundamentals of geographical thought. Chaitanya Publishing House.

    Google Scholar 

  • Adibroto, T. A., Wijayanti, P., Adhi, R. P., & Nugroho, R. (2019). Preliminary study on socio-economic aspect towards Jakarta climate resilient (case study: Cengkareng District, West Jakarta and Penjaringan District, North Jakarta). IOP Conference Series: Earth and Environmental Science, 314(1), 012035. https://doi.org/10.1088/1755-1315/314/1/012035

    Article  Google Scholar 

  • Aggarwal, A., Rafique, F., Rajesh, E., & Ahmed, S. (2016). Urban flood hazard mapping using change detection on wetness transformed images. Hydrological Sciences Journal, 61(5), 816–825. https://doi.org/10.1080/02626667.2014.952638

    Article  Google Scholar 

  • Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the universal soil loss equation (pp. 127–132). John Wiley and Sons Ltd.

    Google Scholar 

  • Babu, C. R., Gosain, A. K., & Gopal, B. (2013). Restoration and conservation of river Yamuna. In Final Report: Submitted to the National Green Tribunal by Expert committee.

  • Barbieri, G., & Cambuli, P. (2009). The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). In 18th World IMACS/MODSIM Congress, Cairns, Australia.

  • Bhadu, S., & Punia, M. (2023). Governance and floodplain extent changes of Yamuna river floodplain in megacity Delhi. In S. K. Mustak, D. Singh, & P. K. Srivastava (Eds.), In: Advanced remote sensing for urban and landscape ecology (pp. 191–228). Springer Nature.

    Chapter  Google Scholar 

  • Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modelling with GIS. Elsevier.

    Google Scholar 

  • Brown, R., Chanson, H., McIntosh, D., & Madhani, J. (2011). Turbulent velocity and suspended sediment concentration measurements in an urban environment of the Brisbane River Flood Plain at Gardens Point on 12–13 January 2011 [Report, CH83/11]. School of Civil Engineering, The University of Queensland https://eprints.qut.edu.au/44077/

  • Bui, D. T., Tsangaratos, P., Ngo, P.-T.T., Pham, T. D., & Pham, B. T. (2019). Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–1054. https://doi.org/10.1016/j.scitotenv.2019.02.422

    Article  CAS  Google Scholar 

  • Casas, A., Lane, S. N., Yu, D., & Benito, G. (2010). A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data. Hydrology and Earth System Sciences, 14(8), 1567–1579. https://doi.org/10.5194/hess-14-1567-2010

    Article  Google Scholar 

  • Chatterjee, R., Gupta, B. K., Mohiddin, S. K., Singh, P. N., Shekhar, S., & Purohit, R. (2009). Dynamic groundwater resources of National Capital Territory, Delhi: Assessment, development and management options. Environmental Earth Sciences, 59(3), 669–686. https://doi.org/10.1007/s12665-009-0064-y

    Article  Google Scholar 

  • Chaudhuri, R. R., & Sharma, P. (2020). Addressing uncertainty in extreme rainfall intensity for semi-arid urban regions: Case study of Delhi. India Natural Hazards, 104(3), 2307–2324. https://doi.org/10.1007/s11069-020-04273-5

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1), 27–35. https://doi.org/10.1023/A:1021677510649

    Article  CAS  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  • Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to support vector machines and other kernel-based learning methods. Cambridge University Press.

    Book  Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324. https://doi.org/10.1007/s00254-007-0818-3

    Article  CAS  Google Scholar 

  • Darabi, H., Rahmati, O., Naghibi, S. A., Mohammadi, F., Ahmadisharaf, E., Kalantari, Z., TorabiHaghighi, A., Soleimanpour, S. M., Tiefenbacher, J. P., & Tien Bui, D. (2022). Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood. Geocarto International, 37(19), 5716–5741. https://doi.org/10.1080/10106049.2021.1920629

    Article  Google Scholar 

  • De, U. S., Singh, G. P., & Rase, D. M. (2013). Urban flooding in recent decades in four mega cities of India. Journal of Indian Geophysics Union, 17(02), 153–165.

    Google Scholar 

  • Dehghanian, N., Nadoushani, S. M., Saghafian, S. B., & Damavandi, M. R. (2020). Evaluation of coupled ANN-GA model to prioritize flood source areas in ungauged watersheds. Hydrology Research, 51(3), 423–442. https://doi.org/10.2166/nh.2020.141

    Article  Google Scholar 

  • Delhi Traffic Police. (2013) Waterlogging Map of Delhi. https://traffic.delhipolice.gov.in/water-logging-area

  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720–730. https://doi.org/10.1007/s00254-001-0454-2

    Article  Google Scholar 

  • Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I. N., & Pourghasemi, H. R. (2019). Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In H. R. Pourghasemi & C. Gokceoglu (Eds.), In: Spatial modeling for earth and environmental sciences (pp. 323–336). Elsevier.

    Chapter  Google Scholar 

  • Feng, Q., Liu, J., & Gong, J. (2015). Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao China. Water, 7(4), 1437. https://doi.org/10.3390/w7041437

    Article  Google Scholar 

  • Gigović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360. https://doi.org/10.3390/w9060360

    Article  Google Scholar 

  • Gupta, K. (2020). Challenges in developing urban flood resilience in India. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 378(2168), 20190211. https://doi.org/10.1098/rsta.2019.0211

    Article  Google Scholar 

  • Harsányi, E., Bashir, B., Alsilibe, F., Moazzam, M. F. U., Ratonyi, T., Alsalman, A., Széles, A., Nyeki, A., Takács, I., & Mohammed, S. (2022). Predicting modified Fournier index by using artificial neural network in Central Europe. International Journal of Environmental Research and Public Health, 19(17), 10653. https://doi.org/10.3390/ijerph191710653

    Article  Google Scholar 

  • Hong, H., Ilia, I., Tsangaratos, P., Chen, W., & Xu, C. (2017). A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 290, 1–16. https://doi.org/10.1016/j.geomorph.2017.04.002

    Article  Google Scholar 

  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.-X., & Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang Country, China. Science of the Total Environment, 625, 575–588. https://doi.org/10.1016/j.scitotenv.2017.12.256

    Article  CAS  Google Scholar 

  • Jenks, G. F. (1977) Optimal data classification for choropleth maps. Department of Geographiy, University of Kansas Occasional Paper. https://cir.nii.ac.jp/crid/1570572700325134464

  • Kansal, M. L., Osheen, N., & Tyagi, A. (2019). Hotspot Identification for Urban Flooding in a Satellite Town of National Capital Region of India. pp.12–24. https://doi.org/10.1061/9780784482322.002

  • Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947–987. https://doi.org/10.1007/s11069-016-2357-2

    Article  Google Scholar 

  • König, A., Sægrov, S., & Schilling, W. (2012). damage assessment for urban flooding. Global Solutions for Urban Drainage. https://doi.org/10.1061/40644(2002)273

    Article  Google Scholar 

  • Kumar, M., Sharif, M., & Ahmed, S. (2019). Flood risk management strategies for national capital territory of Delhi India. ISH Journal of Hydraulic Engineering, 25(3), 248–259. https://doi.org/10.1080/09715010.2017.1408434

    Article  Google Scholar 

  • Kumar, M., Singh, R. B., Singh, A., Pravesh, R., Majid, S. I., & Tiwari, A. (2023). Case study 6: Urban flood susceptibility modelling of Srinagar using novel fuzzy multi-layer perceptron neural network. Geographic information systems in urban planning and management (pp. 221–238). Springer Nature.

    Chapter  Google Scholar 

  • Kumar, S., Kaushal, D. R., & Gosain, A. K. (2018) Assessment of Stormwater Drainage Network to Mitigate Urban Flooding Using GIS Compatible PCSWMM Model. In ASCE India Conference 2017. pp. 38–46 https://doi.org/10.1061/9780784482025.005

  • Lee, S., Kim, J.-C., Jung, H.-S., Lee, M. J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8(2), 1185–1203. https://doi.org/10.1080/19475705.2017.1308971

    Article  Google Scholar 

  • Majid, S. I., Kumar, M., Kumar, P., & Verma, N. K. (2023). GIS-based flood susceptibility mapping of Srinagar District, India using weights-of-evidence (WofE), frequency ratio (FR) and fuzzy gamma operator (FGO). Journal of the Indian Society of Remote Sensing, 51(12), 2421–2446. https://doi.org/10.1007/s12524-023-01776-z

    Article  Google Scholar 

  • Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234. https://doi.org/10.1016/j.enggeo.2011.09.006

    Article  Google Scholar 

  • Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S. B., & Djordjević, S. (2004). Potential and limitations of 1D modelling of urban flooding. Journal of Hydrology, 299(3), 284–299. https://doi.org/10.1016/j.jhydrol.2004.08.014

    Article  Google Scholar 

  • Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. B. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080–1102. https://doi.org/10.1080/19475705.2017.1294113

    Article  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103

    Article  Google Scholar 

  • NBSS&LUP. (1979) Soil Survey and Land Use Plan of Delhi Territory: Report No. 422. Regional Centre Delhi, National Bureau of Soil Survey and Land Use Planning, Seminary Hills, Nagpur – 440 006, Maharashtra

  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6(6), 1515. https://doi.org/10.3390/w6061515

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1–25. https://doi.org/10.1023/A:1022693220894

    Article  CAS  Google Scholar 

  • Pradhan, A. M. S., & Kim, Y.-T. (2017). Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bulletin of Engineering Geology and the Environment, 76(4), 1263–1279. https://doi.org/10.1007/s10064-016-0919-x

    Article  Google Scholar 

  • Pradhan, B. (2009). Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, 9(2), 1.

    Google Scholar 

  • Rafiq, F., Ahmed, S., Ahmad, S., & Khan, A. A. (2016). Urban floods in India. International Journal of Scientific & Engineering Research, 7(1), 721–734.

    Google Scholar 

  • Raghavendra, N. S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372–386. https://doi.org/10.1016/j.asoc.2014.02.002

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559

    Article  Google Scholar 

  • Ramesh, V., & Iqbal, S. S. (2022). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: A case study of Greater Mumbai, Maharashtra India. Geocarto International, 37(2), 581–606. https://doi.org/10.1080/10106049.2020.1730448

    Article  Google Scholar 

  • RazaviTermeh, S. V., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. https://doi.org/10.1016/j.scitotenv.2017.09.262

    Article  CAS  Google Scholar 

  • Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11(1), 821–844. https://doi.org/10.1080/19475705.2020.1753824

    Article  Google Scholar 

  • Rentschler, J., Avner, P., Marconcini, M., Su, R., Strano, E., Vousdoukas, M., & Hallegatte, S. (2023). Global evidence of rapid urban growth in flood zones since 1985. Nature, 622(7981), 87. https://doi.org/10.1038/s41586-023-06468-9

    Article  CAS  Google Scholar 

  • Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419–427. https://doi.org/10.1016/j.compgeo.2007.06.014

    Article  Google Scholar 

  • Sarkar, A., Ali, S., Kumar, S., Shekhar, S., & Rao, S. V. N. (2016). Chapter 5—Groundwater environment in Delhi, India. In S. Shrestha, V. P. Pandey, B. R. Shivakoti, & S. Thatikonda (Eds.), Groundwater environment in Asian Cities (pp. 77–108). Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Sarmah, T., Das, S., Narendr, A., & Aithal, B. H. (2020). Assessing human vulnerability to urban flood hazard using the analytic hierarchy process and geographic information system. International Journal of Disaster Risk Reduction, 50, 101659. https://doi.org/10.1016/j.ijdrr.2020.101659

    Article  Google Scholar 

  • Sati, V. P., Deng, W., Lu, Y., Zhang, S., Wan, J., & Song, X. (2017). Urbanization and Its Impact on Rural Livelihoods: A Study of Xichang City Administration, Sichuan Province, China. Chinese Journal of Urban and Environmental Studies, 05(04), 1750028. https://doi.org/10.1142/S2345748117500282

    Article  Google Scholar 

  • Smola, A., Burges, C., Drucker, H., Golowich, S., Hemmen, L., Müller, K.-R., Scholkopf, B., & Vapnik, V. (2003) Regression Estimation with Support Vector Learning Machines

  • Sneha, M. S., Nagar, V., Moral, S., & Teli, B. (2018). Preparation of flood model and hazard estimation on Yamuna River (using GIS and remote sensing). International Research Journal of Engineering and Technology, 05(03), 3591–3597.

    Google Scholar 

  • Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68(2), 569–585. https://doi.org/10.1007/s11069-013-0639-5

    Article  Google Scholar 

  • TCPO. (2017). Urban Flooding-Standard Operating Procedure. Own and Country Planning Organization, Ministry of Housing and Urban Affairs, Government of India. https://niua.org/sites/default/files/SOP_Urban_flooding.pdf

  • Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA, 175, 174–192. https://doi.org/10.1016/j.catena.2018.12.011

    Article  Google Scholar 

  • Tehrany, M. S., Lee, M.-J., Pradhan, B., Jebur, M. N., & Lee, S. (2014a). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014b). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA, 125, 91–101. https://doi.org/10.1016/j.catena.2014.10.017

    Article  Google Scholar 

  • Tehrany, M. S., Shabani, F., NeamahJebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561. https://doi.org/10.1080/19475705.2017.1362038

    Article  Google Scholar 

  • Thattai, D. V., Sathyanathan, R., Dinesh, R., & Kumar, L. H. (2017). Natural disaster management in India with focus on floods and cyclones. IOP Conference Series: Earth and Environmental Science, 80(1), 12054. https://doi.org/10.1088/1755-1315/80/1/012054

    Article  Google Scholar 

  • Tomar, P., Singh, S. K., Kanga, S., Meraj, G., Kranjčić, N., Đurin, B., & Pattanaik, A. (2021). GIS-based urban flood risk assessment and management—A case study of Delhi National Capital Territory (NCT). India. Sustainability, 13(22), 12850. https://doi.org/10.3390/su132212850

    Article  Google Scholar 

  • Urban Floods. (2023) https://ndma.gov.in/Natural-Hazards/Urban-Floods

  • Xu, W., Cong, J., Proverbs, D., & Zhang, L. (2021). An evaluation of urban resilience to flooding. Water, 13(15), 2022. https://doi.org/10.3390/w13152022

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Conflict of interest

The authors unanimously declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, S.I., Kumar, M., Sahu, N. et al. Application of ensemble fuzzy weights of evidence-support vector machine (Fuzzy WofE-SVM) for urban flood modeling and coupled risk (CR) index for ward prioritization in NCT Delhi, India. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04926-6

Keywords

Navigation