Skip to main content
Log in

Investigating the effect of complexity on groundwater flow modeling uncertainty

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Considering complexity in groundwater modeling can aid in selecting an optimal model, and can avoid over parameterization, model uncertainty, and misleading conclusions. This study was designed to determine the uncertainty arising from model complexity, and to identify how complexity affects model uncertainty. The Ajabshir aquifer, located in East Azerbaijan, Iran, was used for comprehensive hydrogeological studies and modeling. Six unique conceptual models with four different degrees of complexity measured by the number of calibrated model parameters (6, 10, 10, 13, 13 and 15 parameters) were compared and characterized with alternative geological interpretations, recharge estimates and boundary conditions. The models were developed with Model Muse and calibrated using UCODE with the same set of observed data of hydraulic head. Different methods were used to calculate model probability and model weight to explore model complexity, including Bayesian model averaging, model selection criteria, and multicriteria decision-making (MCDM). With the model selection criteria of AIC, AICc and BIC, the simplest model received the highest model probability. The model selection criterion, KIC, and the MCDM method, in addition to considering the quality of model fit between observed and simulated data and the number of calibrated parameters, also consider uncertainty in parameter estimates with a Fisher information matrix. KIC and MCDM selected a model with moderate complexity (10 parameters) and the best parameter estimation (model 3) as the best models, over another model with the same degree of complexity (model 2). The results of these comparisons show that in choosing between models, priority should be given to quality of the data and parameter estimation rather than degree of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95:649–655. doi:10.1016/0377-2217(95)00300-2

    Article  Google Scholar 

  • Collyer CE (1985) Comparing strong and weak models by fitting them to computer-generated data. Atten Percept Psychophys 38:476–481. doi:10.3758/BF03207179

    Article  CAS  Google Scholar 

  • Dai Z, Samper J (2004) Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour Res. doi:10.1029/2004WR003248

    Google Scholar 

  • Dai H, Ye M (2015) Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. J Hydrol 528:286–300. doi:10.1016/j.jhydrol.2015.06.034

    Article  Google Scholar 

  • Dai Z, Samper J, Wolfsberg A, Levitt D (2008) Identification of relative conductivity models for water flow and solute transport in unsaturated bentonite. Phys Chem Earth 33:177–185. doi:10.1016/j.pce.2008.10.012

    Article  Google Scholar 

  • Dai Z, Wolfsberg A, Reimus P, Deng H, Kwicklis E, Ding M, Ye M (2012) Identification of sorption processes and parameters for radionuclide transport in fractured rock. J. Hydrol 414:220–230. doi:10.1016/j.jhydrol.2011.10.035

    Article  Google Scholar 

  • Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Env Res Risk A 24:809–820. doi:10.1007/s00477-010-0378-z

    Article  Google Scholar 

  • Duan Q, Ajami N, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30:1371–1386. doi:10.1016/j.advwatres.2006.11.014

    Article  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

    Google Scholar 

  • Emberger F (1969) Climatique la Tunisia. Instituto Agronomico perl’Oltremare 31–52

  • Engelhardt I, De Aguinaga JG, Mikat H, Schüth C, Liedl R (2014) Complexity vs. simplicity: groundwater model ranking using information criteria. Ground Water 52:573–583. doi:10.1111/gwat.12080

    Article  CAS  Google Scholar 

  • Environmental Simulations Inc (ESI) (2007) Guides to using Ground Water Vista: version 5

  • Freyberg DL (1988) An exercise in ground-water model calibration and prediction. Ground Water 26:350–360. doi:10.1111/j.1745-6584.1988.tb00399

    Article  Google Scholar 

  • Haitjema H (2011) Model complexity: a cost-benefit issue. GSA Today 43:354

    Google Scholar 

  • Harbaugh AW (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey, Reston, pp. 6–A16

  • Hill MC (1998) Methods and guidelines for effective model calibration. US Geological Survey. Colorado, Denver, p 90

    Google Scholar 

  • Hill MC (2006) The practical use of simplicity in developing ground water models. Ground Water 44:775–781. doi:10.1111/j.1745-6584.2006.00227

    Article  CAS  Google Scholar 

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, New Jersey

    Book  Google Scholar 

  • Hojberg AL, Refsgaard JC (2005) Model uncertainty-parametric uncertainty versus conceptual mode. Water Sci Technol 6:153–160

    Google Scholar 

  • Hunt RJ, Zheng C (1999) Debating complexity in modeling. EOS Trans Am Geophys Union 80:29. doi:10.1029/99EO00025

    Article  Google Scholar 

  • Hunt RJ, Doherty J, Tonkin MJ (2007) Are models too simple? Arguments for increased parameterization. Ground Water 45:254–262. doi:10.1111/j.1745-6584.2007.00316

    Article  CAS  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi:10.1093/biomet/76.2.297

    Article  Google Scholar 

  • Jacobs AM, Grainger J (1994) Models of visual word recognition: sampling the state of the art. J Exp Psychol Hum 20:1311. doi:10.1037/0096-1523.20.6.1311

    Article  Google Scholar 

  • Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal. doi:10.1109/TPAMI.1982.4767213

    Google Scholar 

  • Kishore P, Padmanabhan G (2016) An integrated approach of fuzzy AHP and fuzzy TOPSIS to select logistics service provider. J Manuf Sci 16:51–59. doi:10.1515/jmsp-2015-0017

    Google Scholar 

  • Kuchanur MP (2006) Simulation-Optimization methodologies to estimate groundwater availability. Dissertation, Texas A&M University-Kingsville

  • Liu P, Elshall AS, Ye M, Beerli P, Zeng X, Lu D, Tao Y (2016) Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods. Water Resour Res. doi:10.1002/2014WR016718

    Google Scholar 

  • Meyer PD, Ye M, Neuman SP, Rockhold ML, Cantrell KJ, Nicholson TJ (2007) Combined estimation of hydrogeologic conceptual model, parameter, and scenario uncertainty. Rep.NUREG/CR-6940 PNNL-16396, U.S. Nucl. Regul. Comm., Washington, DC

  • Nettasana T (2012) Conceptual Model Uncertainty in the Management of the Chi River Basin, Thailand. Dissertation, University of Waterloo

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A 17:291–305. doi:10.1007/s00477-003-0151-7

    Article  Google Scholar 

  • Oreskes N (2000) Why believe a computer? Models, measures, and meaning in the natural system. In: Schneiderman JS (ed) The earth around us: maintaining a livable planet. W. H. Freeman and co., San Francisco, pp 70–82

    Google Scholar 

  • Oreskes N (2003) The role of quantitative models in science. In Lauenroth WK, Canham CD, Cole JJ (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 13–31

    Google Scholar 

  • Patil SK, Kant R (2014) A fuzzy AHP-TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Syst Appl 41:679–693. doi:10.1016/j.eswa.2013.07.093

    Article  Google Scholar 

  • Poeter E, Anderson DR (2005) Multimodel ranking and inference in groundwater modeling. Ground Water 4:597–605. doi:10.1111/j.1745-6584.2005.0061.x

    Article  Google Scholar 

  • Poeter EP, Hill MC, Banta ER, Mehl Steffen, Christensen Steen (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API: U.S. Geological Survey Techniques and Methods, bk. 6, chap. A11, revision of Feb, Virginia

  • Pohlmann K, Ye M, Reeves D, Zavarin M, Decker D, Chapman J (2007) Modeling of groundwater flow and radionuclide transport at the Climax mine sub-CAU, Nevada Test Site (No. DOE/NV/26383-06; 45226). Desert Research Institute, Nevada System of Higher Education, Reno

  • Popper KR (1982) The open universe: an argument for indeterminism. In: Bartley WW (ed) The postscript to the logic of scientific discovery, III edn. Hutchinson, London

    Google Scholar 

  • Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–471

    Article  Google Scholar 

  • Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res. doi:10.1029/2008WR006908

    Google Scholar 

  • Samani S, Moghaddam AA (2015) Hydrogeochemical characteristics and origin of salinity in Ajabshir aquifer, East Azerbaijan, Iran. Q J Eng Geol Hydrogeol 48:175–189. doi: 10.1144/qjegh2014-070

    CAS  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Simmons CT, Hunt RJ (2012) Updating the debate on model complexity. GSA Today 22:28–29. doi:10.1130/GSATG150GW.1

    Article  Google Scholar 

  • Singh A, Mishra S, Ruskauff G (2010) Model averaging techniques for quantifying conceptual model uncertainty. Ground Water 48:701–715. doi:10.1111/j.1745-6584.2009.00642

    Article  CAS  Google Scholar 

  • Sun NZ (1994) Inverse problems in groundwater modeling. Theory and applications of transport in porous media, vol 6. Kluwer Academic, Dordrecht

    Google Scholar 

  • Sun CC (2010) A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst Appl 37:7745–7754. doi:10.1016/j.eswa.2010.04.066

    Article  Google Scholar 

  • Swaify SA, Yakowitz DS (1998) Multiple objective decision making for land, water, and environmental management. In Towards sustainable land use. Furthering cooperation between people and institutions. vol 1. Proceedings of the International Soil Conservation Organisation, Bonn, Germany

  • Szidarovsky F, Gershon M, Duckstein L (1986) Techniques for multiobjective decision making in systems management. Elsevier, Amsterdam

    Google Scholar 

  • Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res. doi:10.1029/2003WR002557

    Google Scholar 

  • Ye M, Meyer PD, Neuman SP (2008a) On model selection criteria in multi model analysis. Water Resour Res. doi:10.1029/2008WR006803

    Google Scholar 

  • Ye M, Pohlmann KF, Chapman JB (2008b) Expert elicitation of recharge model probabilities for the Death Valley regional flow system. J Hydrol 354:102–115. doi:10.1016/j.jhydrol.2008.03.001

    Article  Google Scholar 

  • Ye M, Pohlmann KF, Chapman JB, Pohll GM, Reeves DM (2010) A model-averaging method for assessing groundwater conceptual model uncertainty. Ground Water 48:716–728. doi:10.1111/j.1745-6584.2009.00633

    Article  CAS  Google Scholar 

  • Yeh WG, Yoon YS (1981) Aquifer parameter identification with optimum dimension in parameterization. Water Resour Res 17:664–672. doi:10.1029/WR017i003p00664

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform. Control 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  • Zeleny M (1982) Multiple criteria decision Making. McGraw-Hill Book Company, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Tabriz University. The third author was supported in part by DOE Early Career Award DE-SC0008272 and NSF-EAR Grant 1552329. We thank K. Shashok (Author AID in the Eastern Mediterranean) for technial editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeideh Samani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samani, S., Moghaddam, A.A. & Ye, M. Investigating the effect of complexity on groundwater flow modeling uncertainty. Stoch Environ Res Risk Assess 32, 643–659 (2018). https://doi.org/10.1007/s00477-017-1436-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1436-6

Keywords

Navigation