Skip to main content
Log in

Synergistic effect of UV, thermal, and chemical treatment on biological degradation of low-density polyethylene (LDPE) by Thermomyces lanuginosus

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present analysis deals with the ability of Thermomyces lanuginosus to degrade pre-treated low-density polyethylene (LDPE). The synergistic effect of UV irradiation, heat, and acid pre-treatments on the biodegradability of the polymer was thoroughly assessed. Oxidative structural modifications such as the appearance of carboxylate and carbonyl groups in LDPE chains were recorded post the UV and heat treatments. Furthermore, the nitric acid treatment incorporated NO2 groups into the polymer matrix. Alterations in the polymer thermal stabilities and surface morphologies after each pre-treatment were analyzed using thermogravimetric analysis and scanning electron microscopy (SEM), respectively. The gravimetric analysis revealed a reduction in the weight of the pre-treated LDPE films by 9.21 ± 0.84% after 1 month of the incubation period with Thermomyces lanuginosus. An increase in the thermal stability, disappearance of the incorporated hydrophilic functional groups, and reduction in the carbon content of the polymer samples post the incubation period further justified the biodegradation process. SEM analysis showed modifications in the morphology and texture patterns in pre-treated LDPE after inoculation with Thermomyces lanuginosus. The findings suggest that Thermomyces lanuginosus could be efficient for the decomposition of pre-treated LDPE under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abd El-Rehim, H. A., Hegazy, E. S. A., Ali, A. M., Rabie, A. M., El-rehim, H. A. A., Hegazy, E. S. A., et al. (2004). Synergistic effect of combining UV-sunlight-soil burial treatment on the biodegradation rate of LDPE/starch blends. Journal of Photochemistry and Photobiology a: Chemistry, 163(3), 547–556. https://doi.org/10.1016/j.jphotochem.2004.02.003

    Article  CAS  Google Scholar 

  • Albertsson, A. C. (1978). Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. Journal of Applied Polymer Science, 22(12), 3419–3433.

  • Albertsson, A. C., Andersson, S. O., & Karlsson, S. (1987). The mechanism of biodegradation of polyethylene. Polymer Degradation and Stability, 18(1), 73–87.

    Article  CAS  Google Scholar 

  • Awasthi, S., Srivastava, P., Singh, P., Tiwary, D., & Mishra, P. K. K. (2017). Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 1–10. https://doi.org/10.1007/s13205-017-0959-3

  • Brown, B. S., Millls, J., & Hulse, J. M. (1974). Chemical and biological degradation of waste plastics. Nature, 250, 161–163.

    Article  CAS  Google Scholar 

  • Chaudhary, A. K., & Vijayakumar, R. P. (2020a). Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environment, Development and Sustainability, 22(2), 1093–1104. https://doi.org/10.1007/s10668-018-0236-6

    Article  Google Scholar 

  • Chaudhary, A. K., & Vijayakumar, R. P. (2020b). Studies on biological degradation of polystyrene by pure fungal cultures. Environment, Development and Sustainability, 22(5), 4495–4508. https://doi.org/10.1007/s10668-019-00394-5

    Article  Google Scholar 

  • Chaudhary, A. K., & Vijayakumar, R. P. (2020c). Synthesis of polystyrene/starch/CNT composite and study on its biodegradability. Journal of Polymer Research, 27, 187.

    Article  CAS  Google Scholar 

  • Chaudhary, A. K., Chaitanya, K., & Vijayakumar, R. P. (2021). Synergistic effect of UV and chemical treatment on biological degradation of Polystyrene by Cephalosporium strain NCIM 1251. Archives of Microbiology, 203, 2183–2191.

    Article  CAS  Google Scholar 

  • Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry, 1–23. https://doi.org/10.1002/9780470027318.a5606

  • Contat-Rodrigo, L., Ribes-Greus, A., & Imrie, C. T. (2002). Thermal analysis of high-density polyethylene and low-density polyethylene with enhanced biodegradability. Journal of Applied Polymer Science, 86(3), 764–772. https://doi.org/10.1002/app.10974

    Article  CAS  Google Scholar 

  • Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F., & Esmaeili, E. (2013). Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One, 8(9). https://doi.org/10.1371/journal.pone.0071720

  • Avalos-Belmontes, F., Zapata-Gonzalez, I., Ramos-Devalle, L. F., & Roberto Zitzumbo-Guzman, S. A. R. (2009). Thermo-oxidative degradation of HDPE as a function of its crystalline content. Journal of Polymer Science Part b: Polymer Physics, 47, 1906–1915. https://doi.org/10.1002/polb

    Article  CAS  Google Scholar 

  • Garaeva, S. R., Alper, A., Aydin, A. A. A., Aydin, A. A. A., Yalçin, B., Fatullaeva, P. A., & Medzhidov, A. A. (2010). Composition, properties, and application of products formed in oxidation of polyethylene by nitric acid. Russian Journal of Applied Chemistry, 83(1), 97–101. https://doi.org/10.1134/S1070427210010192

    Article  CAS  Google Scholar 

  • Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557–563. https://doi.org/10.1016/S0142-9418(01)00124-6

    Article  CAS  Google Scholar 

  • Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 2115–2126. https://doi.org/10.1098/rstb.2008.0311

    Article  CAS  Google Scholar 

  • Jeon, H. J., & Kim, M. N. (2013). Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation, 24(1), 89–98. https://doi.org/10.1007/s10532-012-9560-y

    Article  CAS  Google Scholar 

  • Kershaw, M. J., & Talbot, N. J. (1998). Hydrophobins and repellents: Proteins with fundamental roles in fungal morphogenesis. Fungal Genetics and Biology, 33, 18–33.

    Article  Google Scholar 

  • Koski, L. (1978). A DSC study of thermally treated and UV-treated low-density polyethylene. Journal of Thermal Analysis, 13, 467–472.

    Article  CAS  Google Scholar 

  • Koutny, M., Lemaire, J., & Delort, A. M. (2006). Biodegradation of polyethylene films with prooxidant additives. Chemosphere, 64(8), 1243–1252. https://doi.org/10.1016/j.chemosphere.2005.12.060

    Article  CAS  Google Scholar 

  • Lee, B., Pometto, A. L., Fratzke, A., & Bailey, T. B. (1991). Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Applied and Environmental Microbiology, 57(3), 678–685.

    Article  CAS  Google Scholar 

  • Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000

    Article  CAS  Google Scholar 

  • Manzur, A., Limo, M., Limon-Gonzalez, M., & Favela-Torres, E. (2004). Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi. Journal of Applied Polymer Science, 92, 265–271. https://doi.org/10.1002/app.13644

    Article  CAS  Google Scholar 

  • North, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/reveh-2012-0030

    Article  CAS  Google Scholar 

  • Otake, Y., Kobayashi, T., Asabe, H., Murakami, N., & Ono, K. (1995). Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science, 56(13), 1789–1796.

    Article  CAS  Google Scholar 

  • Paabo, M., & Levin, B. C. (1987). A literature review of the chemical nature and toxicity of the decomposition products of polyethylenes. Fire and Materials, 11(2), 55–70. https://doi.org/10.1002/fam.810110203

    Article  CAS  Google Scholar 

  • Palmisano, A. C., Pettigrew, C. A., Palmisano, A. C., & Pettigrew, C. A. (1992). Biodegradability of plastics. American Institute of Biological Sciences, 42(9), 680–685.

    Google Scholar 

  • Pandey, J. K., & Singh, R. P. (2001). UV-irradiated biodegradability of ethylene-propylene copolymers, LDPE, and I-PP in composting and culture environments. Biomacromolecules, 2(3), 880–885. https://doi.org/10.1021/bm010047s

    Article  CAS  Google Scholar 

  • Pramila, R., & Ramesh, K. V. (2011). Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water – A SEM analysis. African Journal of Microbiology Research, 5(28), 5013–5018. https://doi.org/10.5897/AJMR11.670

    Article  CAS  Google Scholar 

  • Rajandas, H., Parimannan, S., Sathasivam, K., Ravichandran, M., & Yin, L. S. (2012). Analysis method: A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polymer Testing, 31(8), 1094–1099. https://doi.org/10.1016/j.polymertesting.2012.07.015

    Article  CAS  Google Scholar 

  • Roy, P. K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., & Rajagopal, C. (2008). Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polymer Degradation and Stability, 93(10), 1917–1922. https://doi.org/10.1016/j.polymdegradstab.2008.07.016

    Article  CAS  Google Scholar 

  • Seneviratne, G., Tennakoon, N. S., Weerasekara, M. L. M. A. W., & Nandasena, K. A. (2006). Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Current Science, 90(1), 20–21.

    CAS  Google Scholar 

  • Sharma, J., Gurung, T., Upadhyay, A., Nandy, K., Agnihotri, P., & Mitra, A. K. (2014). Isolation and characterization of plastic degrading bacteria from soil collected from the dumping grounds of an industrial area. International Journal of Advanced and Innovative Research, 3(3), 225–232.

    Google Scholar 

  • Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4

    Article  CAS  Google Scholar 

  • Skariyachan, S., Setlur, A. S., Naik, S. Y., Naik, A. A., Usharani, M., & Vasist, K. S. (2017). Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environmental Science and Pollution Research, 24(9), 8443–8457. https://doi.org/10.1007/s11356-017-8537-0

    Article  CAS  Google Scholar 

  • Sudhakar, M., Doble, M., Murthy, P. S., & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low- and high-density polyethylenes. International Biodeterioration and Biodegradation, 61(3), 203–213. https://doi.org/10.1016/j.ibiod.2007.07.011

    Article  CAS  Google Scholar 

  • Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Rowland, S. J., Barlaz, M. A., Jonsson, S., et al. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical transactions of the royal society B: biological sciences, 2027–2045. https://doi.org/10.1098/rstb.2008.0284

  • Thompson, R. C., Swan, S. H., Moore, C. J., & Saal, F. S. (2009). Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1973–1976. https://doi.org/10.1098/rstb.2009.0054

    Article  Google Scholar 

  • Tolinski, M. (2012). Plastics and Sustainability: TOwards a Peaceful Coexistence between Bio-Based and Fossil Fuel-Based Plastics. https://doi.org/10.1002/9781118217849

    Article  Google Scholar 

  • Tribedi, P., & Dey, S. (2017). Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environmental Monitoring and Assessment, 189(12). https://doi.org/10.1007/s10661-017-6351-2

  • Trilla, R., Perena, J. M., & Fatou, J. G. (1983). Thermal and mechanical properties of oriented polyethylene treated with nitric acid. Polymer Journal, 15(11), 803–809. https://doi.org/10.1295/polymj.15.803

    Article  CAS  Google Scholar 

  • Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2(4), 200–2004.

    Google Scholar 

  • Volke-Seplveda, T., Saucedo-Castaeda, G., Gutirrez-Rojas, M., Manzur, A., Favela-Torres, E., et al. (2002). Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. Journal of Applied Polymer Science, 83(2), 305–314. https://doi.org/10.1002/app.2245

    Article  Google Scholar 

  • Weiland, M., Daro, A., & David, C. (1995). Biodegradation of thermally oxidized polyethylene. Polymer Degradation and Stability, 48(2), 275–289. https://doi.org/10.1016/0141-3910(95)00040-S

    Article  CAS  Google Scholar 

  • Wierckx, N., Prieto, M. A., Pomposiello, P., Lorenzo, V. De, Connor, K. O., & Blank, L. M. (2015). Opinion: Plastic waste as a novel substrate for industrial biotechnology. Microbial biotechnology, 8(6), 24180–22180. https://doi.org/10.1111/1751-7915.12312

  • Zahra, S., Abbas, S. S., Mahsa, M. T., & Mohsen, N. (2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management, 30(3), 396–401. https://doi.org/10.1016/j.wasman.2009.09.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A.K., Chaitanya, K., Dalmia, R. et al. Synergistic effect of UV, thermal, and chemical treatment on biological degradation of low-density polyethylene (LDPE) by Thermomyces lanuginosus. Environ Monit Assess 193, 513 (2021). https://doi.org/10.1007/s10661-021-09296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09296-4

Keywords

Navigation