Skip to main content
Log in

Synthesis of polystyrene/starch/CNT composite and study on its biodegradability

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper presents the preparation of polystyrene-starch- carbon nanotubes composite by solvent casting technique. Phases present in the samples were analyzed using X-ray diffraction (XRD). The changes in the functional group of polystyrene after the addition of starch and carbon nanotubes were analyzed through Fourier-transform infrared spectroscopy (FTIR). An increase in the thermal stability of prepared composite was observed after the addition of starch and carbon nanotubes with respect to pure polystyrene as analyzed by Thermogravimetric analysis (TGA). Further, addition of starch and carbon nanotubes (CNTs) increases the number of decomposition sites. Scanning Electron Microscopy (SEM) analysis revealed the modifications in surface texture of polystyrene after addition of starch and CNTs. The addition of CNTs gave a conductivity of 9.148 × 10−3 1/Ω cm for polystyrene-starch (35%)-CNT (15%) composite. Biodegradation of the polymer composites after 3 months of soil burial period was analyzed by weight loss, XRD, FTIR, TGA and SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaczmarek H, Światek M, Kamińska A (2004) Modification of polystyrene and poly(vinyl chloride) for the purpose of obtaining packaging materials degradable in the natural environment. Polym Degrad Stab 83:35–45

    CAS  Google Scholar 

  2. Pushpadass HA, Weber RW, Dumais JJ, Hanna MA (2010) Biodegradation characteristics of starch-polystyrene loose-fill foams in a composting medium. Bioresour Technol 101:7258–7264

    CAS  PubMed  Google Scholar 

  3. Ahmad JK, Abdul Amer ZJ, Majid A (2012) Effect of γ-radiation on thermal and chemical properties of starch/polystyrene biopolymer blend. J Biomim Biomater Tissue Eng 16:71–81

    CAS  Google Scholar 

  4. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym Degrad Stab 107:166–177

    CAS  Google Scholar 

  5. Sheikh N, Akhavan A, Ataeivarjovi E (2013) Radiation grafting of styrene on starch with high efficiency. Radiat Phys Chem 85:189–192

    CAS  Google Scholar 

  6. Tian L, Kolvenbach B, Corvini N, Wang S, Tavanaie N, Wang L, Ma Y, Scheu S, Corvini PFX, Ji R (2017) Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnol 38:101–105

    CAS  Google Scholar 

  7. Ali HE, Ghaffar AMA (2017) Preparation and effect of gamma radiation on the properties and biodegradability of poly ( styrene / starch ) blends. Radiat Phys Chem 130:411–420

    CAS  Google Scholar 

  8. Chaudhary AK, Vijayakumar RP (2020) Effect of chemical treatment on biological degradation of high density polyethylene ( HDPE ). Environ Dev Sustain 22:1093–1104

    Google Scholar 

  9. Ojeda T, Freitas A, Dalmolin E, Pizzol MD, Vignol L, Melnik J, Jacques R, Bento F, Camargo F (2009) Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym Degrad Stab 94:2128–2133

    CAS  Google Scholar 

  10. Dafader NC, Rahman N, Alam MF et al (2017) Preparation and characterization of starch/polyvinyl alcohol blend films by the application of gamma radiation. J Polym Res 11:121–132

    CAS  Google Scholar 

  11. Schlemmer D, Sales MJA, Resck IS (2009) Degradation of different polystyrene/thermoplastic starch blends buried in soil. Carbohydr Polym 75:58–62

    CAS  Google Scholar 

  12. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC (1999) Degradation of styrene-g-cassava starch filled polystyrene plastics. Polym Degrad Stab 66:323–335

    CAS  Google Scholar 

  13. Oliveira CIR, Cunha FR, Andrade CT (2010) Evaluation of biodegradability of different blends of polystyrene and starch buried in soil. Macromol Symp 290:115–120

    CAS  Google Scholar 

  14. Ashamol A, Sailaja RRN (2011) Mechanical, thermal, and biodegradation studies of polystyrene–Phthalated starch blends using epoxy functionalized Compatibilizer. J Appl Polym Sci 125:313–326

    Google Scholar 

  15. Nikolic V, Sava Velickovic AP (2014) Biodegradation of polystyrene- graft -starch copolymers in three different types of soil. Environ Sci Pollut Res 21:9877–9886

    CAS  Google Scholar 

  16. Lenz RW (1993) Biodegradable Polymers. Adv Polym Sci. https://doi.org/10.1007/BFb0027550

  17. Kaewtatip K, Tanrattanakul V (2008) Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydr Polym 73:647–655

    CAS  PubMed  Google Scholar 

  18. Yu Y, Wang J (2007) Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice. Food Res Int 40:297–303

    CAS  Google Scholar 

  19. Kumar S, Maiti P (2016) Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv 6:67449–67480

    CAS  Google Scholar 

  20. Goodwin DG, Marsh KL, Sosa IB et al (2015) Interactions of microorganisms with polymer Nanocomposite surfaces containing oxidized carbon nanotubes. Environ Sci Technol 49:5484–5492. https://doi.org/10.1021/acs.est.5b00084

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin DG, Boyer I, Devahif T et al (2018) Biodegradation of carbon nanotube/polymer nanocomposites using a monoculture. Environ Sci Technol 52:40–51

    CAS  PubMed  Google Scholar 

  22. Nzenguet AM, Aqlil M, Essamlali Y, Amadine O, Snik A, Larzek M, Zahouily M (2018) Novel bionanocomposite films based on graphene oxide filled starch/polyacrylamide polymer blend: structural, mechanical and water barrier properties. J Polym Res 25:86

    Google Scholar 

  23. Du JH, Bai J, Cheng HM (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1:253–273

    CAS  Google Scholar 

  24. Sharif A, Aalaie J, Shariatpanahi H, Hosseinkhanli H, Khoshniyat A (2011) Study on the structure and properties of nanocomposites based on high-density polyethylene/starch blends. J Polym Res 18:1955–1969

    CAS  Google Scholar 

  25. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon N Y 44:1034–1047

    CAS  Google Scholar 

  26. Zhang L, Petersen EJ, Habteselassie MY, Mao L, Huang Q (2013) Degradation of multiwall carbon nanotubes by bacteria. Environ Pollut 181:335–339

    CAS  PubMed  Google Scholar 

  27. Bajad GS, Tiwari SK, Vijayakumar RP (2015) Synthesis and characterization of CNTs using polypropylene waste as precursor. Mater Sci Eng B Solid-State Mater Adv Technol 194:68–77

    CAS  Google Scholar 

  28. Al-Shabanat M (2012) Electrical studies of nanocomposites consisting of MWNTs and polystyrene. J Polym Res 19:1–8

    CAS  Google Scholar 

  29. Song S, Wang C, Pan Z, Wang X (2008) Preparation and characterization of Amphiphilic starch Nanocrystals. J Appl Polym Sci 107:418–422

    CAS  Google Scholar 

  30. Sen P, Suresh K, Kumar RV et al (2016) A simple solvent blending coupled sonication technique for synthesis of polystyrene ( PS )/ multi-walled carbon nanotube ( MWCNT ) nanocomposites : effect of modified MWCNT content. J Sci Adv Mater Devices 1:311–323

    Google Scholar 

  31. Gómez S, Rendtorff NM, Aglietti EF, Sakka Y, Suarez G (2017) Intensity of sulfonitric treatment on multiwall carbon nanotubes. Chem Phys Lett 689:135–141

    Google Scholar 

  32. Gaur MS, Singh R, Tiwari RK (2014) Study of structural morphology , thermal degradation and surface charge decay in PU + PSF + CNTs polymer hybrid nanocomposite. J Electrost 72:242–251

    CAS  Google Scholar 

  33. Kim SY, Shin KS, Lee SH, Kim KW, Youn JR (2010) Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers Polym 11:1018–1023

    CAS  Google Scholar 

  34. Sarmiento AM, Guzmán HL, Morales G, Romero DE, Pataquiva-Mateus AY (2016) Expanded Polystyrene (EPS) and Waste Cooking Oil (WCO): from urban wastes to potential material of construction. Waste Biomass Valorization 7:1245–1254

    CAS  Google Scholar 

  35. Singh B, Sharma N (2007) Optimized synthesis and characterization of polystyrene graft copolymers and preliminary assessment of their biodegradability and application in water pollution alleviation technologies. Polym Degrad Stab 92:876–885

    CAS  Google Scholar 

  36. Janarthanan P, Zin Wan Yunus WM, Bin AM (2003) Thermal behavior and surface morphology studies on polystyrene grafted sago starch. J Appl Polym Sci 90:2053–2058

    CAS  Google Scholar 

  37. Schlemmer D, De Oliveira ER, Sales MJA (2007) Polystyrene/thermoplastic starch blends with different plasticizers : preparation and thermal characterization. J Therm Anal Calorim 87:635–638

    CAS  Google Scholar 

  38. Chiu F, Li B, Jiang J (2012) Syndiotactic polystyrene / multi-walled carbon nanotube nanocomposites : Polymorphism , thermal properties , electrical conductivity , and rheological properties. Compos Part A 43:2230–2240

    CAS  Google Scholar 

  39. McNally T, Potschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232

    CAS  Google Scholar 

  40. Wang Y, Sotzing GA, Weiss RA (2003) Conductive polymer foams as sensors for volatile amines. Chem Mater 15:375–377

    CAS  Google Scholar 

  41. Zhang H, Zhang G, Tang M, Zhou L, Li J, Fan X, Shi X, Qin J (2018) Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem Eng J 353:381–393

    CAS  Google Scholar 

  42. Chaudhary AK, Vijayakumar RP (2019) Studies on biological degradation of polystyrene by pure fungal cultures. Environ Dev Sustain 22:4495–4508. https://doi.org/10.1007/s10668-019-00394-5

    Article  Google Scholar 

  43. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19:851–858

    CAS  PubMed  Google Scholar 

  44. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, van Tassel PR (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2:1789–1794

    CAS  PubMed  Google Scholar 

  45. Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019

    CAS  PubMed  Google Scholar 

  46. Restrepo-flórez J, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene- a review. Int Biodeterior Biodegradation 88:83–90

    Google Scholar 

  47. Niculăescua P, Olarb L, Stefanb R et al (2018) XRD and IR investigations of some commercial polystyrene samples thermally degraded. Stud UBB Chem 2:63–70

    Google Scholar 

  48. Wu Y, Xiong W, Zhou H, Li H, Xu G, Zhao J (2016) Biodegradation of poly ( butylene succinate ) film by compost microorganisms and water soluble product impact on mung beans germination. Polym Degrad Stab 126:22–30

    CAS  Google Scholar 

  49. Syranidou E, Karkanorachaki K, Amorotti F et al (2017) Biodegradation of weathered polystyrene films in seawater microcosms. Sci Rep 7:1–12

    CAS  Google Scholar 

  50. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213

    CAS  Google Scholar 

  51. Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Vijayakumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A.K., Vijayakumar, R.P. Synthesis of polystyrene/starch/CNT composite and study on its biodegradability. J Polym Res 27, 187 (2020). https://doi.org/10.1007/s10965-020-02164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02164-8

Keywords

Navigation