Skip to main content
Log in

Heavy metal pollution in surface water of the Upper Ganga River, India: human health risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To assess the risk on human health, heavy metal contamination was analysed from surface water in the Upper Ganga river, India. Spatial and seasonal distribution of Fe, Mn, Zn, Cr and Pb was evaluated at eight sites during pre-monsoon and post-monsoon season of 2017. Average concentration of heavy metals was high, often exceeding the limits prescribed for surface water by Bureau of Indian Standard (BIS) and the World Health Organization (WHO). Based on heavy metal pollution index (HPI), 87% of the river stretch was classified as medium to highly polluted. Simultaneous assessment of the health risk employing chronic daily intake (CDI) and hazard quotient (HQ) indicates that exposure through ingestion and dermal pathways currently poses no serious threat to human health (CDI < 1, HQ < 1). For the two population groups analysed, HQIngestion values for Cr (adults 0.51, child 0.55) and Pb (adult 0.31, child 0.34) were significantly higher as compared with other heavy metals. HIIngestion varied from 0.85 to 1.64 for adult and 0.92 to 1.77 for child group, indicating health risk to both groups with child group being more risk prone from either of the exposure pathways. In addition, HI values revealed an increased risk to health for both groups during the post-monsoon season. Higher hazard index (HI) values (> 1) in the Upper Ganga river indicate an ever-increasing non-carcinogenic risk to the exposed population within the riverine landscape. The study highlights the impact of heavy metals in degrading the water quality of the Upper Ganga river and also advocates immediate attention towards reducing human health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adimalla, N. (2020). Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Human and Ecological Risk Assessment, 26(2), 310–334. https://doi.org/10.1080/10807039.2018.1508329.

    Article  CAS  Google Scholar 

  • Algül, F., & Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-68833-2.

    Article  CAS  Google Scholar 

  • Alves, R. I. S., Sampaio, C. F., Nadal, M., Schuhmacher, M., Domingo, J. L., & Segura-muñoz, S. I. (2014). Metal concentrations in surface water and sediments from Pardo River , Brazil : Human health risks. Environmental Research, 133, 149–155. https://doi.org/10.1016/j.envres.2014.05.012.

    Article  CAS  Google Scholar 

  • APHA, AWWA, & WEF. (2005). In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association (APHA).

    Google Scholar 

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1–4), 83–89. https://doi.org/10.1007/s10661-008-0659-x.

    Article  CAS  Google Scholar 

  • Avigliano, E., & Schenone, N. F. (2015). Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchemical Journal, 122, 149–158. https://doi.org/10.1016/j.microc.2015.05.004.

    Article  CAS  Google Scholar 

  • Bhardwaj, R., Gupta, A., & Garg, J. K. (2017). Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science, 31(1), 52–66. https://doi.org/10.1016/j.wsj.2017.02.002.

    Article  Google Scholar 

  • Bhuiyan, M. A. H., Dampare, S. B., Islam, M. A., & Suzuki, S. (2015). Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environmental Monitoring and Assessment, 187(1), 4075. https://doi.org/10.1007/s10661-014-4075-0.

    Article  CAS  Google Scholar 

  • Bhutiani, R., Khanna, D. R., Kulkarni, D. B., & Ruhela, M. (2016). Assessment of Ganga river ecosystem at Haridwar, Uttarakhand, India with reference to water quality indices. Applied Water Science, 6(2), 107–113. https://doi.org/10.1007/s13201-014-0206-6.

    Article  Google Scholar 

  • Bilgin, A., & Konanç, M. U. (2016). Evaluation of surface water quality and heavy metal pollution of Coruh River Basin (Turkey) by multivariate statistical methods. Environmental Earth Sciences, 75(12). https://doi.org/10.1007/s12665-016-5821-0.

  • BIS. (2012). Indian Standards Drinking Water- Specification (second revision) IS-10500:2012, (May).

  • Buragohain, M., Bhuyan, B., & Sarma, H. P. (2010). Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environmental Monitoring and Assessment, 170(1–4), 345–351. https://doi.org/10.1007/s10661-009-1237-6.

    Article  CAS  Google Scholar 

  • Cengiz, M. F., Kilic, S., Yalcin, F., Kilic, M., & Gurhan Yalcin, M. (2017). Evaluation of heavy metal risk potential in Bogacayi River water (Antalya, Turkey). Environmental Monitoring and Assessment, 189(6), 248. https://doi.org/10.1007/s10661-017-5925-3.

    Article  CAS  Google Scholar 

  • Central Pollution Control Board. (2013). Pollution Assessment : River Ganga, 206. http://cpcb.nic.in/upload/NewItems/NewItem_203_Ganga_report.pdf. Accessed 1 Apr 2019.

  • Chaudhary, M., Mishra, S., & Kumar, A. (2017). Estimation of water pollution and probability of health risk due to imbalanced nutrients in River Ganga, India. International Journal of River Basin Management, 15(1), 53–60. https://doi.org/10.1080/15715124.2016.1205078.

    Article  Google Scholar 

  • Chen, J., Wu, H., & Qian, H. (2016). Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, Northwest China. Exposure and Health, 8(3), 349–359. https://doi.org/10.1007/s12403-016-0208-8.

    Article  Google Scholar 

  • Devi, N. L., & Yadav, I. C. (2018). Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment. Environmental Geochemistry and Health, 40(6), 2343–2358. https://doi.org/10.1007/s10653-018-0101-4.

    Article  CAS  Google Scholar 

  • Dwivedi, S., Mishra, S., & Tripathi, R. D. (2018). Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environment International, 117(May), 327–338. https://doi.org/10.1016/j.envint.2018.05.015.

    Article  CAS  Google Scholar 

  • Edet, A. A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area , Lower Cross River Basin ( southeastern Nigeria). GeoJournal, 57, 295–304.

    Article  Google Scholar 

  • Garg, A., & Joshi, B. (2015). Ecosystem sustenance of Upper Ganga Ramsar site through phytoremediation. Geophytology, 45(2), 175–180.

    Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Assessment of surface water quality using heavy metal pollution index in Subarnarekha River, India. Water Quality, Exposure and Health, 5(4), 173–182. https://doi.org/10.1007/s12403-013-0106-2.

    Article  CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2015). Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environmental Monitoring and Assessment, 187(3), 63. https://doi.org/10.1007/s10661-015-4265-4.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Chabukdhara, M., Singh, J., & Bux, F. (2015). Evaluation and potential health hazard of selected metals in water, sediments, and fish from the Gomti River. 7039. https://doi.org/10.1080/10807039.2014.902694

  • Izhar, S., Goel, A., Chakraborty, A., & Gupta, T. (2016). Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere, 146, 582–590. https://doi.org/10.1016/j.chemosphere.2015.12.039.

    Article  CAS  Google Scholar 

  • Jumbe, A. S., & Nandini, N. (2009). Heavy metals analysis and sediment quality values in urban lakes heavy metals analysis and sediment quality values in urban lakes. American Journal of Environmental Sciences, 6(5), 678–687.

    Article  Google Scholar 

  • Khan, M. Y. A., Gani, K. M., & Chakrapani, G. J. (2016). Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arabian Journal of Geosciences, 9(1), 1–9. https://doi.org/10.1007/s12517-015-2134-7.

    Article  CAS  Google Scholar 

  • Leena, S., Choudhary, S. K., & Singh, P. K. (2012). Status of heavy metal concentration in water and sediment of River Ganga at selected sites in middle Ganga plain. International Journal of Research in Chemistry and Environment, 2(4), 236–243. https://doi.org/10.6088/ijes.2012030131026.

    Article  CAS  Google Scholar 

  • Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181(1–3), 1051–1058. https://doi.org/10.1016/j.jhazmat.2010.05.120.

    Article  CAS  Google Scholar 

  • Low, K. H., Zain, S. M., Abas, M. R., Md Salleh, K., & Teo, Y. Y. (2015). Distribution and health risk assessment of trace metals in freshwater tilapia from three different aquaculture sites in Jelebu Region (Malaysia). Food Chemistry, 177, 390–396. https://doi.org/10.1016/j.foodchem.2015.01.059.

    Article  CAS  Google Scholar 

  • Ministry of Statistics and Programme Implementaion. (2018). Drinking water, sanitation, hygiene and housing condition in India, NSS 76th Round (July 2018-December 2018), National Sample Survey Office, Government of India.

  • Mishra, A. (2010). Assessment of water quality using principal component analysis: a case study of the river Ganges. Journal of Water Chemistry and Technology, 32(4), 227–234. https://doi.org/10.3103/S1063455X10040077.

    Article  Google Scholar 

  • Misra, A. K. (2010). A River about to Die: Yamuna. Journal of Water Resource and Protection, 02(05), 489–500. https://doi.org/10.4236/jwarp.2010.25056.

    Article  CAS  Google Scholar 

  • Mitra, S., Sarkar, S. K., Raja, P., Biswas, J. K., & Murugan, K. (2018). Dissolved trace elements in Hooghly (Ganges) River Estuary, India: risk assessment and implications for management. Marine Pollution Bulletin, 133(March), 402–414. https://doi.org/10.1016/j.marpolbul.2018.05.057.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Nithila, P., & Reddy, J. (1996). Estimation of heavy metals in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health, 31(2), 283–289. https://doi.org/10.1080/10934529609376357.

    Article  Google Scholar 

  • Narain, S., & Mahapatra, R. (2020). State of India’s Environment 2020 in Figures.

  • Pandey, J., & Singh, R. (2015). Heavy metals in sediments of Ganga River: up- and downstream urban influences. Applied Water Science, 7(4), 1669–1678. https://doi.org/10.1007/s13201-015-0334-7.

    Article  CAS  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications. Environmental Geochemistry and Health, 40(2), 609–623. https://doi.org/10.1007/s10653-017-0006-7.

    Article  CAS  Google Scholar 

  • Paul, D. (2017). Research on heavy metal pollution of river Ganga: a review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001.

    Article  Google Scholar 

  • Prasad, B., & Bose, J. M. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower himalayas. Environmental Geology, 41(1–2), 183–188. https://doi.org/10.1007/s002540100380.

    Article  CAS  Google Scholar 

  • Ramsar. (2005). Information Sheet on Ramsar Wetlands - Upper Ganga River. Ramsar. https://rsis.ramsar.org/RISapp/files/RISrep/IN1574RIS.pdf. Accessed 19 January 2019.

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78. https://doi.org/10.1016/j.jenvman.2016.10.023.

    Article  CAS  Google Scholar 

  • Sanghi, R., & Kaushal, N. (2014). Our National River Ganga. Our National River Ganga: Lifeline of Millions. https://doi.org/10.1007/978-3-319-00530-0

  • Sehgal, M., Garg, A., Suresh, R., & Dagar, P. (2012). Heavy metal contamination in the Delhi segment of Yamuna basin. Environmental Monitoring and Assessment, 184(2), 1181–1196. https://doi.org/10.1007/s10661-011-2031-9.

    Article  CAS  Google Scholar 

  • Şener, Ş., Şener, E., & Davraz, A. (2017). Assessment of groundwater quality and health risk in drinking water basin using GIS. Journal of Water and Health, 15(1), 112–132. https://doi.org/10.2166/wh.2016.148.

    Article  Google Scholar 

  • Shamuyarira, K. K., & Gumbo, J. R. (2014). Assessment of heavy metals in municipal sewage sludge: A case study of Limpopo Province, South Africa. International Journal of Environmental Research and Public Health, 11(3), 2569–2579. https://doi.org/10.3390/ijerph110302569.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22, 464–475. https://doi.org/10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Siddiqui, E., Verma, K., Pandey, U., & Pandey, J. (2019). Metal contamination in seven tributaries of the ganga river and assessment of human health risk from fish consumption. Archives of Environmental Contamination and Toxicology, 77(2), 263–278. https://doi.org/10.1007/s00244-019-00638-5.

    Article  CAS  Google Scholar 

  • Singh, U. K., & Kumar, B. (2017). Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere, 174, 183–199. https://doi.org/10.1016/j.chemosphere.2017.01.103.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., De Maio, M., Kumar, P. (2015). Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI ) model in a coal mining area, India. Bulletin of Environmental Contamination and Toxicology, 0–6. https://doi.org/10.1007/s00128-015-1558-9

  • Trivedi, R. C. (2010). Water quality of the Ganga River—an overview. Aquatic Ecosystem Health & Management, 13(August 2013), 347–351. https://doi.org/10.1080/14634988.2010.528740.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Office of Emergency and Remedial Response, USEPA, 1(540/R/1–89/002), 1–291.

    Google Scholar 

  • USEPA. (1996). United States Environmental Protection Agency, Quantitative uncertainty analysis of super fund residential risk path way models for soil and ground water: white paper. Office of Health and Environmental Assessment, Oak Ridge, TN, USA.

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites, Appendix D-dispersion dactors calculations. United States Environmental Protection Agency, Washington, DC, USA, pp. 4-24. OSWER93552002.

  • USEPA. (2004). Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. US EPA, 1(540/R/99/005). https://doi.org/EPA/540/1-89/002

  • USEPA. (2010). Integrated Risk Information System (IRIS). United States Environmental Protection Agency.

  • USEPA. (2011). Exposure factors handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh. http://www.epa.gov/ncea/efh. Accessed 2 February 2019

  • Vega, M., Pardo, R., Enrique, B., & Luis, D. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory. Water Research, 32(12), 3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9.

    Article  CAS  Google Scholar 

  • Wasim Aktar, M., Paramasivam, M., Ganguly, M., Purkait, S., & Sengupta, D. (2010). Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: a study for toxicity and ecological impact. Environmental Monitoring and Assessment, 160(1–4), 207–213. https://doi.org/10.1007/s10661-008-0688-5.

    Article  CAS  Google Scholar 

  • WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum.

  • WII, GACMC. (2017). Aquatic Fauna of Ganga River: Status and Conservation.

  • Wildlife Institute of India. (2018). Assessment of the wildlife values of the Ganga River from Bijnor to Ballia including turtle wildlife sanctuary, Uttar Pradesh.

  • Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull Environ Contam Toxicol, 84, 405–409. https://doi.org/10.1007/s00128-008-9497-3.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20. https://doi.org/10.5402/2011/402647.

    Article  Google Scholar 

  • Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies, 13(August 2016), 1–10. https://doi.org/10.1016/j.ejrh.2017.07.002.

    Article  Google Scholar 

  • Zeng, X., Liu, Y., You, S., Zeng, G., Tan, X., Hu, X., Hu, X., Huang, L., & Li, F. (2015). Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 22(12), 9400–9412. https://doi.org/10.1007/s11356-014-4064-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author thankfully acknowledges Guru Gobind Singh Indraprastha University, New Delhi, India for IP research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Saluja, R., Joshi, V. et al. Heavy metal pollution in surface water of the Upper Ganga River, India: human health risk assessment. Environ Monit Assess 192, 742 (2020). https://doi.org/10.1007/s10661-020-08701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08701-8

Keywords

Navigation