Skip to main content
Log in

Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater samples were collected from 30 sampling sites throughout the Subarnarekha River Basin for source apportionment and risk assessment studies. The concentrations of As, Ba, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Se, Sr, V and Zn were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results demonstrated that concentrations of the metals showed significant spatial variation with some of the metals like As, Mn, Fe, Cu and Se exceeding the drinking water standards at some locations. Principal component analysis (PCA) outcome of four factors that together explained 84.99 % of the variance with >1 initial eigenvalue indicated that both innate and anthropogenic activities are contributing factors as source of metal in groundwater of Subarnarekha River Basin. Risk of metals on human health was then evaluated using hazard quotients (HQ) and cancer risk by ingestion for adult and child, and it was indicated that Mn was the most important pollutant leading to non-carcinogenic concerns. The carcinogenic risk of As for adult and child was within the acceptable cancer risk value of 1 × 10−4. The largest contributors to chronic risks were Mn, Co and As. Considering the geometric mean concentration of metals, the hazard index (HI) for adult was above unity. Considering all the locations, the HI varied from 0.18 to 11.34 and 0.15 to 9.71 for adult and child, respectively, suggesting that the metals posed hazard by oral intake considering the drinking water pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abollino, A., Aceto, M., Buoso, S., Gasparon, M., Green, W. J., Malandrino, M., et al. (2004). Distribution of major, minor and trace elements in lake environments of Antarctica. Antarctic Science, 16(3), 277–291.

    Article  Google Scholar 

  • Alimonti, A., Petrucci, F., Krachler, M., Bocca, B., & Caroli, S. (2000). Reference values for chromium, nickel and vanadium in urine of youngsters from the urban area of Rome. Journal of Environmental Monitoring, 2, 351–354.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Soil processes and the behaviour of metals. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 11–37). London: Blackie.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (1997). Toxicological profile for cadmium. Draft for public comment. Public Health Service, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Atlanta, GA.

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2000a). Toxicological profile for chromium. Washington: U.S. Department of Health and Human Services.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2000b). Toxicological profile for manganese. GA: United States Department of Health and Human Services, Public Health Service Atlanta.

    Google Scholar 

  • Banta, R. G., & Markesbery, W. R. (1977). Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology, 27, 213–216.

    Article  CAS  Google Scholar 

  • Barceloux, D. G. (1999). Cobalt. Clinical Toxicology, 37, 201–216.

    Article  CAS  Google Scholar 

  • Bengraine, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, 100, 179–195.

    Article  CAS  Google Scholar 

  • BIS (Bureau of Indian Standards). (2012). Standards for drinking water, IS:10500.

  • Bleich, S., Degner, D., Sprung, R., Riegel, A., Poser, W., & Rüther, E. (1999). Chronic manganism: fourteen years of follow-up. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 117.

    Article  CAS  Google Scholar 

  • Buchet, J. P., & Lison, D. (2000). Clues and uncertainties in the risk assessment of arsenic in drinking water. Food and Chemical Toxicology, 38, S81–S85.

    Article  CAS  Google Scholar 

  • Cantor, K. P. (1997). Drinking water and cancer. Cancer Causes and Control, 8, 292–308.

    Article  CAS  Google Scholar 

  • Çelebi, A., Şengörür, B., & Kløve, B. (2014). Human health risk assessment of dissolved metals in groundwater and surface waters in the Melen watershed, Turkey. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering., 49, 153–161.

    Article  Google Scholar 

  • Chakrabarty, S., & Sarma, H. P. (2011). Heavy metal contamination of drinking water in Kamrup district, Assam, India. Environmental Monitoring and Assessment, 179, 479–486.

    Article  CAS  Google Scholar 

  • Chanpiwat, P., Lee, B., Kim, K., & Sthiannopkao, S. (2014). Human health risk assessment for ingestion exposure to groundwater contaminated by naturally occurring mixtures of toxic heavy metals in the Lao PDR. Environmental Monitoring and Assessment, 186, 4905–4923.

    Article  CAS  Google Scholar 

  • Connell, D. W., & Miller, G. J. (1984). Chemistry and ecotoxicology of pollution. New York: John Wiley and Sons.

    Google Scholar 

  • Dang, H. S., Jaiswal, D. D., Parameswaran, M., Deodhar, K. P., & Krishnamony, S. (1996). Age dependent physical and anatomical Indian data for application in internal dosimetry. Radiation Protection Dosimetry, 63, 217–222.

    Article  Google Scholar 

  • Dang, H. S., Jaiswal, D. D., Parameswaran, M., & Krishnamony, S. (1994). Physical anatomical, physiological and metabolic data for reference Asian man—a proposal. BARC (Bhabha Atomic Research Centre), Report No. BARC/1994/FE/043.

  • Davis, A., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009.

    Article  CAS  Google Scholar 

  • Dhakate, R., & Singh, V. S. (2008). Heavy metal contamination in groundwater due to mining activities in Sukinda valley, Orissa—a case study. Journal of Geography and Regional Planning, 1(4), 58–67.

    Google Scholar 

  • Elder, J.F. (1988). Metal biogeochemistry in surface water systems—a review of principals and concepts, U.S. Geological Survey Circular 1013.

  • Fishbein, L. (1981). Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium and nickel. Environmental Health Perspectives, 40, 43–64.

    Article  CAS  Google Scholar 

  • Giri, S., Mahato, M. K., Singh, G., & Jha, V. N. (2012). Risk assessment due to intake of heavy metals through the ingestion of ground water around two proposed uranium mining areas in Jharkhand, India. Environment Monitoring and Assessment, 184, 1351–1358.

    Article  CAS  Google Scholar 

  • Giri, S., Singh, A. K., & Tewary, B. K. (2013). Source and distribution of metals in bed sediments of Subarnarekha River, India. Environmental Earth Science, 70, 3381–3392.

    Article  CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. Journal of Hazardous Materials, 265, 305–314.

    Article  CAS  Google Scholar 

  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis with readings (4th ed.). London: Prentice-Hall.

    Google Scholar 

  • Haloi, N., & Sarma, H. P. (2012). Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India). Environmental Monitoring and Assessment, 184, 6229–6237.

    Article  CAS  Google Scholar 

  • Hartley, W. R., Englande, A. J., & Harrington, D. J. (1999). Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Water Science and Technology, 39, 305–310.

    Article  CAS  Google Scholar 

  • Heyden, C. J., & New, M. G. (2004). Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk. Science of the Total Environment, 327, 17–30.

    Article  Google Scholar 

  • Holzgraefe, M., Poser, W., Kijewski, H., et al. (1986). Chronic enteral poisoning caused by potassium permanganate: a case report. Journal of Toxicology, Clinical Toxicology, 24, 235–244.

    Article  CAS  Google Scholar 

  • Homoncik, S. C., MacDonald, A. M., Heal, K. V. Ó., Dochartaigh, B. É., & Ngwenya, B. T. (2010). Manganese concentrations in Scottish groundwater. Science of the Total Environment, 408, 2467–2473.

    Article  CAS  Google Scholar 

  • Huang, G. X., Sun, J. C., Jing, J. H., Wang, S., Du, H. Y., Liu, J. T., Chen, X., Zhang, Y. X., Di, X. B., & Zhi, B. F. (2008). Distibution and origin of iron in groundwater of Zhujiang delta. Geology in China, 35, 531–538 (in Chinese with English abstract).

    Article  CAS  Google Scholar 

  • Ikenaka, Y., Shouta, M., Nakayama, M., Muzandu, K., Choongo, K., Teraoka, H., Mizuno, N., & Ishizuka, M. (2010). Heavy metal contamination of soil and sediment in Zambia. African Journal of Environmental Science Technology, 4, 729–739.

    CAS  Google Scholar 

  • Ipeaiyeda, A. R., & Dawodu, M. (2008). Heavy metals contamination of topsoil and dispersion in the vicinities of reclaimed auto-repair workshops in Iwo, Nigeria. Bulletin of Chemical Society of Ethiopia, 22, 339–348.

    CAS  Google Scholar 

  • Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2009). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 166, 663–676.

    Article  Google Scholar 

  • Jain, S. C., Mehta, S. C., Kumar, B., Reddy, A. R., & Nagaratnam, A. (1995). Formulation of the reference Indian adult: anatomical and physiological data. Health Physics, 68, 509–522.

    Article  CAS  Google Scholar 

  • Johnson, J., Schewel, L., & Graedel, T. E. (2006). The contemporary anthropogenic chromium cycle. Environmental Science and Technology, 40, 7060–7069.

    Article  CAS  Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kargar, M., Khorasani, N., Karami, M., Rafiee, G., & Naseh, R. (2012). Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran. Environmental Monitoring and Assessment, 184, 6173–6185.

    Article  CAS  Google Scholar 

  • Karim, Z. (2011). Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan. Bulletin of Environmental Contamination and Toxicology, 86, 676–678.

    Article  CAS  Google Scholar 

  • Kavcar, P., Sofuoglu, A., & Sofuoglu, S. C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. International Journal of Hygiene and Environmental Health, 212, 216–227.

    Article  CAS  Google Scholar 

  • Lantzy, R. J., & Mackenzie, F. T. (1979). Atmospheric trace metals: global cycles and assessment of man’s impact. Geochimica et Cosmochimica Acta, 43, 511–525.

    Article  CAS  Google Scholar 

  • Leung, C. M., & Jiao, J. J. (2006). Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in mid-levels area, Hong Kong. Water Research, 40, 753–767.

    Article  CAS  Google Scholar 

  • Ma, H. W., Hung, M. L., & Chen, P. C. (2007). A systemic health risk assessment for the chromium cycle in Taiwan. Environment International, 33(2), 206–218.

    Article  CAS  Google Scholar 

  • Miguel, E. D., Iribarren, I., Chacon, E., Ordonez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  Google Scholar 

  • Miller, J. C., & Miller, J. N. (1989). Statistics for analytical chemistry (2nd ed.). New York: Ellis, Horwood Limited.

    Google Scholar 

  • Mirenda, R. J. (1986). Acute toxicity and accumulation of zinc in the crayfish Orconectes virilis (Hagen). Bulletin of Environmental Contamination and Toxicology, 37, 387–394.

    Article  CAS  Google Scholar 

  • Momot, O., & Synzynys, B. (2005). Toxic aluminium and heavy metals in groundwater of middle Russia: health risk assessment. International Journal of Environmental Research and Public Health, 2(2), 214–218.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. S., Puranik, S. C., & Singh, V. P. (2010). Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environmental Monitoring and Assessment, 163, 215–227.

    Article  CAS  Google Scholar 

  • Newcomba, W. D., William, D., & Donald, R. J. (2002). Trace element distribution in US groundwaters: a probabilistic assessment using public domain data. Applied Geochemistry, 17, 49–57.

    Article  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47–49.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis (pp. 154–155). London: Royal Society of Chemistry.

    Google Scholar 

  • Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G., & Linton, B. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton Inquiry. Journal of Toxicology and Environmental Health, Part A, 65, 1–142.

    Article  CAS  Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques. New York: Wiley.

    Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., & Anthemidis, A. (2003). Assessment of the surface water quality in northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Smith, I. C., Ferguson, T. L., & Carson, B. L. (1975). Metals in new and used petroleum products. In T. F. Yeh (Ed.), The Role of Trace Metals in Petroleum. AnnArbor: AnnArbor Science Publishers.

    Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Sarma, V. S., Vasanthavigar, M., Vijayaraghavan, K., Rajivgandhi, R., et al. (2009). Hydrogeochemical characterization of groundwater in Salem District of Tamilnadu, India. Research Journal of Environmental and Earth Sciences, 1(2), 22–33.

    CAS  Google Scholar 

  • Sun, F., Chen, J., Tong, Q., & Zeng, S. (2007). Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system. Water Science and Technology, 56, 47–56.

    Article  CAS  Google Scholar 

  • Tahri, M., Benya¨Ich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., & Moutte, J. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environmental Monitoring and Assessment, 102, 405–417.

    Article  CAS  Google Scholar 

  • Upadhyay, A. K., Gupta, K. K., Sircar, J. K., Deb, M. K., & Mundhara, G. L. (2006). Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environmental Geology, 50, 397–403.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1980). Exposure and risk assessment for zinc. Office of Water Regulations and Standards (WH-553). EPA440481016. PB85212009, Washington, DC, USA

  • USEPA (US Environmental Protection Agency). (1986). Guidelines for the health risk assessment of chemical mixtures. 51 Federal Register 34014 (September 24, 1986).

  • USEPA (US Environmental Protection Agency). (1989). Health effect assessments summary tables (HEAST) and user’s Guide. Washington: Office of Emergency and Remedial Response.

    Google Scholar 

  • USEPA (US Environmental Protection Agency). (1991). Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions (Memorandum from D. R. Clay, OSWER 9355.0–30, April 1991). Washington, DC, USA. www.epa.gov/oswer/riskassessment/baseline.htm. Accessed 20 Jan 2014.

  • USEPA (US Environmental Protection Agency). (1993). Carcinogenicity assessment. Washington: IRIS (Integrated Risk Information System), 2003.

    Google Scholar 

  • USEPA (US Environmental Protection Agency). (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312 July 2004, Office of Superfund Remediation and Technology Innovation, Washington, DC.

  • USEPA (US Environmental Protection Agency). (2006). Edition of the drinking water standards and health advisories, Washington, DC, USA.

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • Wayne, R. O. (1990). A physical explanation of the lognormality of pollutant concentrations. Journal of Air and Waste Management Association, 40, 1378–1383.

    Article  Google Scholar 

  • WHO (World Health Organization). (2006). Guidelines for drinking water quality, third ed., Geneva.

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health riskassessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmenal Geochemistry and Health, 36, 169–182.

    Article  CAS  Google Scholar 

  • Wu, B., Zhang, Y., Zhang, X., & Cheng, S. (2010). Health risk from exposure of organic pollutants through drinking water consumption in Nanjing, China. Bulletin of Environmental Contamination and Toxicology, 84, 46–50.

    Article  CAS  Google Scholar 

  • Wu, B., Zhao, D., Jia, H., Zhang, Y., Zhang, X., & Cheng, S. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bulletin of Environmental Contamination and Toxicology, 82, 405–409.

    Article  CAS  Google Scholar 

  • Wunderlin, D. A., Días, M. P., Amémaría, V., Pesce, S. F., Hued, A. C., & Bistoni, M. Á. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality, a case study: Suquia river basin (Cordoba–Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Xu, B., Xu, Q., Liang, C., Li, L., & Jiang, L. (2014). Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China. Frontiers in Environmental Science and Engineering. doi:10.1007/s11783-014-0675-8.

    Google Scholar 

  • Zhang, Y., Ma, R., & Li, Z. (2014). Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China). Environmental Monitoring and Assessment, 186, 4669–4684.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Government of India, for providing the necessary funding for the study under the Fast Track Young Scientist Scheme (Grant No. SR/FTP/ES-185/2010 (G)). Also, authors are thankful to the Director and Geo-Environment Division (EMG), Central Institute of Mining and Fuel Research, Dhanbad for providing the necessary laboratory facilities and other logistic support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Giri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S., Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ Monit Assess 187, 63 (2015). https://doi.org/10.1007/s10661-015-4265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4265-4

Keywords

Navigation