Skip to main content

Advertisement

Log in

Brief status of contamination in surface water of rivers of India by heavy metals: a review with pollution indices and health risk assessment

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Water is polluted via various means; among these, heavy metal (HM) contamination is of great concern because of the involvement of metal toxicity and its effect on aquatic environment. The significance and novelty of this study is that it focuses on assessment of HMs in the surface water of Indian rivers only from 1991 to 2021. For this, multivariate studies were used to find multiple sources of HMs. The average concentrations of Fe, Cr, Pb, Ni, Cd, Mn, Hg, Co, and As in surface water of rivers were found to far exceed the permitted limits established by both World Health Organisation and Bureau of Indian Standards. The HM indices like HM pollution, degree of contamination, evaluation index, water pollution, and toxicity load data all indicated that the rivers under investigation are heavily polluted by HMs. In this study, health risk assessment indicated non-carcinogenic effects of Fe, Cr, Cu, Pb, Cd, Mn, Hg, Co, and As in children and those of Fe, Cr, Pb, Cd, Hg, Co, and As in adults. Values investigated for Cancer index were higher for Cr, Pb, Ni, Cd, and As indicating a high risk of cancer development in adults and children via the ingestion pathway than the cutaneous pathway. Moreover, children are more prone to be exposed to both non-carcinogenic and carcinogenic effects of HMs than adults. To reduce human dangers, remediation approaches, such as environment-friendly, cost-effective adsorbents, phytoremediation and bio-remediation, as well as tools like bio-sensors, should be included in river management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used in this study are available from the corresponding author on reasonable request.

References

  • Abou Zakhem, B., & Hafez, R. (2015). Heavy metal pollution index for groundwater quality assessment in Damascus Oasis, Syria. Environmental Earth Sciences, 73(10), 6591–6600. https://doi.org/10.1007/s12665-014-3882-5

    Article  CAS  Google Scholar 

  • Alaboudi, K. A., Ahmed, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), 123–127. https://doi.org/10.1016/j.aoas.2018.05.007

    Article  Google Scholar 

  • Al-Ani, M. Y., Al-Nakib, S. M., Ritha, N. M., Nouri, A. M., & Assima, A. A. (1987). Water quality index applied to the classification and zoning of Al-Jaysh canal, Baghdad—Iraq. Journal of Environmental Science and Health Part a: Environmental Science and Engineering, 22(4), 305–319. https://doi.org/10.1080/10934528709375351

    Article  Google Scholar 

  • Alimonti, A., Petrucci, F., Krachler, M., Bocca, B., & Caroli, S. (2000). Reference values for chromium, nickel and vanadium in urine of youngsters from the urban area of Rome. Journal of Environmental Monitoring, 2, 351–354. https://doi.org/10.1039/B001616K

    Article  CAS  Google Scholar 

  • Ameh, E. G. (2013). Geo-statistics and heavy metal indexing of surface water around Okaba coal mines, Kogi State, Nigeria. Asian Journal of Environmental Science, 8(1), 1–8.

    Google Scholar 

  • Anomohanran, O. (2013). Geophysical investigation of groundwater potential in Ukelegbe, Nigeria. Journal of Applied Sciences, 13(1), 119–125.

    Article  Google Scholar 

  • Arora, N. K. (2018). Bioremediation: A green approach for restoration of polluted ecosystems. Environmental Sustainability, 1(4), 305–307. https://doi.org/10.1007/s42398-018-00036-y

    Article  Google Scholar 

  • Asim, M., & Nageswara Rao, K. (2021). Assessment of heavy metal pollution in Yamuna River, Delhi-NCR, using heavy metal pollution index and GIS. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-021-08886-6

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (1997). Toxicological profile for cadmium. Draft for public comment. Public Health Service, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Atlanta, GA.

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2000). Toxicological profile for chromium. Department of Health and Human Services.

  • ATSDR Agency for Toxic Substances and Disease Registry (2019). Agency for toxic substances and disease registry, substance priority list. https://www.atsdr.cdc.gov/spl.

  • Backman, B., Bodiš, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1998). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36(1–2), 55–64. https://doi.org/10.1007/s002540050320

    Article  CAS  Google Scholar 

  • Banerjee, S., Kumar, A., Maiti, S. K., & Chowdhury, A. (2016). Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha river, India. Environmental Earth Sciences, 75(3), 1–12. https://doi.org/10.1007/s12665-015-4990-6

    Article  CAS  Google Scholar 

  • Bassi, N., Schmidt, G., & de Stefano, L. (2020). Water accounting for water management at the River Basin scale in India: Approaches and gaps. Water Policy, 22(5), 768–788. https://doi.org/10.2166/wp.2020.080

    Article  Google Scholar 

  • Beh, C. L., Chuah, T. G., Nourouzi, M. N., et al. (2012). Removal of heavy metals from steel making waste water by using electric arc furnace slag. Journal of Chemistry, 9(4), 2557–2564. https://doi.org/10.1155/2012/128275

    Article  CAS  Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni, L. (2011). A multivariate statistical analysis of groundwater chemistry data.

  • Bhatnagar, A., & Sillanpaa, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157(2), 277–296. https://doi.org/10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Minocha, A. K., & Sillanpaa, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181–186. https://doi.org/10.1016/j.bej.2009.10.005

    Article  CAS  Google Scholar 

  • BIS (1991). Drinking water specifications. Bureau of Indian Standards.

  • BIS (2012). Drinking water specifications 2nd revision. Bureau of Indian Standards (IS 10500: 2012).

  • Brack, W., Dulio, V., Ågerstrand, M., Allan, I., Altenburger, R., Brinkmann, M., Bunke, D., Burgess, R. M., Cousins, I., Escher, B. I., Hernández, F. J., Hewitt, L. M., Hilscherová, K., Hollender, J., Hollert, H., Kase, R., Klauer, B., Lindim, C., Herráez, D. L., & Vrana, B. (2017). Towards the review of the European union water framework directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 576, 720–737. https://doi.org/10.1016/J.SCITOTENV.2016.10.104

    Article  CAS  Google Scholar 

  • Brick, T., Primrose, B., Chandrasekhar, R., Roy, S., Muliyil, J., & Kang, G. (2004). Water contamination in urban south India: Household storage practices and their implications for water safety and enteric infections. International Journal of Hygiene and Environmental Health, 207(5), 473–480.

    Article  Google Scholar 

  • British Columbia Report (2004). Ambient water quality guidelines for cobalt, ISBN 0-7726 5228-7.

  • Cameselle, C., Gouveia, S., & Urréjola, S. (2019). Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere, 229, 481–488. https://doi.org/10.1016/j.chemosphere.2019.04.222

    Article  CAS  Google Scholar 

  • Carafa, R., Lorenzo, N. E., Llopart, J. S., Kumar, V., & Schuhmacher, M. (2021). Characterization of river biofilm responses to the exposure with heavy metals using a novel micro fluorometer biosensor. Aquatic Toxicology, 231, 105732. https://doi.org/10.1016/j.aquatox.2020.105732

    Article  CAS  Google Scholar 

  • Central Water Commission (CWC) (2017). Reassessment of water availability in India using space inputs. Basin planning and management organisation. Central Water Commission.

  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589

    Article  CAS  Google Scholar 

  • Cheng, H., & Hu, Y. (2010). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environmental Pollution, 158(5), 1134–1146. https://doi.org/10.1016/j.envpol.2009.12.028

    Article  CAS  Google Scholar 

  • Cronin, A. A., Prakash, A., Priya, S., & Coates, S. (2014). Water in India: Situation and prospects. Water Policy, 16(3), 425–441. https://doi.org/10.2166/wp.2014.132

    Article  Google Scholar 

  • Custodio, M., Cuadrado, W., Peñaloza, R., Montalvo, R., Ochoa, S., & Quispe, J. (2020). Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the Central Andes of Peru. Water (switzerland), 12(7), 1946. https://doi.org/10.3390/w12071946

    Article  CAS  Google Scholar 

  • Danazumi, S., & Bichi, M. H. (2010). Industrial pollution and heavy metals profile of Challawa river in Kano, Nigeria. Journal of Applied Sciences in Environmental Sanitation, 5, 56–62.

    Google Scholar 

  • Daud, M. K., Nafees, M., Ali, S., Rizwan, M., Bajwa, R. A., Shakoor, M. B., & Zhu, S. J. (2017). Drinking water quality status and contamination in Pakistan. BioMed Research International. https://doi.org/10.1155/2017/7908183

    Article  Google Scholar 

  • Davis, A., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009. https://doi.org/10.1016/S0045-6535(00)00561-0

    Article  CAS  Google Scholar 

  • Dhaliwal, S. S., Setia, R., Kumar, V., Ghosh, T., Taneja, S., Singh, R., & Pateriya, B. (2021). Assessment of seasonal variations and human health risks due to heavy metals in water, soils and food crops using multi-indices approach. Environmental Earth Sciences, 80(11), 1–11. https://doi.org/10.1007/s12665-021-09686-4

    Article  CAS  Google Scholar 

  • Fishbein, L. (1981). Sources, transport and alterations of metal compounds: An overview. I. Arsenic, beryllium, cadmium, chromium and nickel. Environmental Health Perspectives, 40, 43–64. https://doi.org/10.1289/ehp.814043

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gao, Q., Li, Y., Cheng, Q., Yu, M., Hu, B., Wang, Z., & Yu, Z. (2016). Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Research, 92, 262–274. https://doi.org/10.1016/j.watres.2015.12.055

    Article  CAS  Google Scholar 

  • George, G. L., Burgess, L., & Burgess, G. L. (2015). Effects of heavy metals on benthic macroinvertebrates in the Cordillera Blanca, Peru. WWU Masters Thesis Collection.

  • Giri, S., & Singh, A. K. (2014a). Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. Journal of Hazardous Materials, 265, 305–314. https://doi.org/10.1016/j.jhazmat.2013.09.067

    Article  CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2014b). Assessment of surface water quality using heavy metal pollution index in Subarnarekha River, India. Water Quality Exposure and Health, 5, 173–182. https://doi.org/10.1007/s12403-013-0106-2

    Article  CAS  Google Scholar 

  • Giri, S., Singh, A. K., & Tewary, B. K. (2013). Source and distribution of metals in bed sediments of Subarnarekha River, India. Environmental Earth Sciences, 70(7), 3381–3392. https://doi.org/10.1007/s12665-013-2404-1

    Article  CAS  Google Scholar 

  • Godwin, I., Mohammed, I. A., & Awwal, I. M. (2021). Investigating the concentration of radionuclides in wells used as drinking water in northern Nigeria. A case study of Jos metropolis. Becтник КPAУHЦ. Физикo-Мaтeмaтичecкиe Нayки, 36(3), 210–223. https://doi.org/10.26117/2079-6641-2021-36-3-210-223

    Article  Google Scholar 

  • Goher, M. E., Ali, M. H. H., & El-Sayed, S. M. (2019). Heavy metals contents in Nasser Lake and the Nile River, Egypt: An overview. Egyptian Journal of Aquatic Research, 45(4), 301–312. https://doi.org/10.1016/j.ejar.2019.12.002

    Article  Google Scholar 

  • Gomes, H. I. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews, 1(1), 59–66. https://doi.org/10.1080/09593330.2012

    Article  CAS  Google Scholar 

  • Goswami, S., & Das, S. (2016). Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicology and Environmental Safety, 126, 211–218. https://doi.org/10.1016/j.ecoenv.2015.12.030

    Article  CAS  Google Scholar 

  • Government of India (GoI) (1999). Integrated water resource development: A plan for action. Report of the National Commission on Integrated Water Resources Development (NCIWRD), vol. 1. Government of Ministry of Water Resources.

  • Gupta, A., Joia, J., Sood, A., Sood, R., Sidhu, C., & Kaur, G. (2016). Microbes as potential tool for remediation of heavy metals: A review. Journal of Microbial and Biochemical Technology, 8(4), 364–372. https://doi.org/10.4172/1948-5948.1000310

    Article  CAS  Google Scholar 

  • Howard, J. L., & Sova, J. E. (1993). Sequential extraction analysis of lead in Michigan roadside soils: Mobilization in the Vadose zone by Deicing salts? Journal of Soil Contamination, 2(4), 361–378. https://doi.org/10.1080/15320389309383449

    Article  CAS  Google Scholar 

  • Hu, C., Deng, Z. M., Xie, Y. H., Chen, X. S., & Li, F. (2015). The risk assessment of sediment heavy metal pollution in the east Dongting Lake wetland. Journal of Chemistry. https://doi.org/10.1155/2015/835487

    Article  Google Scholar 

  • Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., & Duverneuil, P. (2005). Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39(4), 610–616. https://doi.org/10.1016/j.watres.2004.10.011

    Article  CAS  Google Scholar 

  • Hussain, J., Husain, I., Arif, M., & Gupta, N. (2017). Studies on heavy metal contamination in Godavari river basin. Applied Water Science, 7(8), 4539–4548. https://doi.org/10.1007/s13201-017-0607-4

    Article  CAS  Google Scholar 

  • Isa, B. K., Amina, S. B., Aminu, U., & Sabo, Y. (2015). Health risk assessment of heavy metals in water, air, soil and fish. African Journal of Pure and Applied Chemistry, 9(11), 204–210. https://doi.org/10.5897/ajpac2015.0654

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Hoque, M. F. (2015). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73(4), 1837–1848. https://doi.org/10.1007/s12665-014-3538-5

    Article  CAS  Google Scholar 

  • Javed, T., Ahmad, N., & Mashiatullah, A. (2018). Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake Pakistan. Polish Journal of Environmental Studies, 27(2), 675–688. https://doi.org/10.15244/pjoes/75815

    Article  CAS  Google Scholar 

  • Jayaswal, K., Sahu, V., & Gurjar, B. R. (2018). Water pollution, human health and remediation. Water remediation (pp. 11–27). Springer.

    Chapter  Google Scholar 

  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils and Sediments, 18(2), 624–639. https://doi.org/10.1007/s11368-017-1833-y

    Article  CAS  Google Scholar 

  • Jiang, Y., Gui, H., Yu, H., Wang, M., Fang, H., Wang, C., & Huang, Y. (2020). Hydrochemical characteristics and water quality evaluation of rivers in different regions of cities: A case study of Suzhou City in Northern Anhui Province, China. Water, 12(4), 950. https://doi.org/10.3390/w12040950

    Article  CAS  Google Scholar 

  • Jindal, R., & Sharma, C. (2011). Studies on water quality of Sutlej River around Ludhiana with reference to physicochemical parameters. Environmental Monitoring and Assessment, 174(1), 417–425. https://doi.org/10.1007/s10661-010-1466-8

    Article  CAS  Google Scholar 

  • Johnson, J., Schewel, L., & Graedel, T. E. (2006). The contemporary anthropogenic chromium cycle. Environmental Science and Technology, 40, 7060–7069. https://doi.org/10.1021/es060061i

    Article  CAS  Google Scholar 

  • Kabir, M. M., Akter, S., Ahmed, F. T., Mohinuzzaman, M., Didar-ul-Alam, M., Mostofa, K. M. G., & Islam, A. R. M. (2021). Salinity-induced fluorescence dissolved organic matter influence co-contamination, quality and risk to human health of tube well water in southeast coastal Bangladesh. Chemosphere, 275, 130053. https://doi.org/10.1016/j.chemosphere.2021.130053

    Article  CAS  Google Scholar 

  • Kamat, P. V., Huehn, R., & Nicolaescu, R. (2002). A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 106(4), 788–794. https://doi.org/10.1021/jp013602t

    Article  CAS  Google Scholar 

  • Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582(2), 390–399. https://doi.org/10.1016/j.aca.2006.09.006

    Article  CAS  Google Scholar 

  • Kaur, S., & Roy, A. (2021). Bioremediation of heavy metals from wastewater using nanomaterials. Environment, Development and Sustainability, 23(7), 9617–9640. https://doi.org/10.1007/s10668-020-01078-1

    Article  Google Scholar 

  • Khan, R., Saxena, A., & Shukla, S. (2020). Evaluation of heavy metal pollution for River Gomti, in parts of Ganga Alluvial Plain, India. SN Applied Sciences, 2(8), 1–12. https://doi.org/10.1007/s42452-020-03233-9

    Article  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  • Khound, N. J., & Bhattacharyya, K. G. (2017). Multivariate statistical evaluation of heavy metals in the surface water sources of Jia Bharali river basin, North Brahmaputra plain, India. Applied Water Science, 7(5), 2577–2586. https://doi.org/10.1007/s13201-016-0453-9

    Article  CAS  Google Scholar 

  • Kumar Reddy, D. H., & Lee, S. M. (2012). Water pollution and treatment technologies. Journal of Environmental Analytics Toxicology, 2, e103. https://doi.org/10.4172/2161-0525.1000e103

    Article  Google Scholar 

  • Kumar, R., Singh, R. D., & Sharma, K. D. (2005). Water resources of India. Current Science, 89(5), 794–811. https://doi.org/10.1002/047147844x.wr243

    Article  Google Scholar 

  • Kumar, S. S. (2011). Land accounting in India: Issues and concerns. Central Statistics Office, Ministry of Statistics and Programme Implementation, New Delhi, India.

  • Kumar, S., Islam, A. R. M. T., Hasanuzzaman, M., Salam, R., Khan, R., & Islam, M. S. (2021a). Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. Journal of Environmental Management, 298, 113517. https://doi.org/10.1016/j.jenvman.2021.113517

    Article  CAS  Google Scholar 

  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., & Cerda, A. (Eds.). (2020). Heavy metals in the environment: Impact, assessment, and remediation. Elsevier.

    Google Scholar 

  • Kumar, V., Sharma, A., Chawla, A., Bhardwaj, R., & Thukral, A. K. (2016). Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environmental Monitoring and Assessment, 188(3), 1–10. https://doi.org/10.1007/s10661-016-5141-6

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Kumar, R., Bhardwaj, R., Kumar Thukral, A., & Rodrigo-Comino, J. (2018). Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment: An International Journal, 26(1), 1–16. https://doi.org/10.1080/10807039.2018.1497946

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Thukral, A. K., & Bhardwaj, R. (2017). Water quality of river Beas, India. Current Science, 112, 1138–1157.

    Article  CAS  Google Scholar 

  • Kumar, V., Singh, K., Shah, M. P., & Kumar, M. (2021b). Phytocapping: An eco-sustainable green technology for environmental pollution control. Bioremediation for environmental sustainability (pp. 481–491). Elsevier.

    Chapter  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6

    Article  CAS  Google Scholar 

  • Lohse, J., Sander, K., Wirts, M. (2001). Heavy metals in motor vehicles 2. Report compiles for the Directorate general Environment, Nuclear safety and Civil protection of the Commission of the European Communities. Okopol—Institut fur Ohkologie und Politik GmbH.

  • Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2012). Pollution in Water of Kasardi River Flowing along Taloja Industrial Area of Mumbai, India. World Environment, 1(1), 6–13. https://doi.org/10.5923/j.env.20110101.02

    Article  Google Scholar 

  • Machado, K. S., Al Ferreira, P. A., Rizzi, J., Figueira, R., & Froehner, S. (2017). Spatial and temporal variation of heavy metals contamination in recent sediments from Barigui river basin, South Brazil. Environment Pollution and Climate Change, 1(01), 1–9. https://doi.org/10.4172/2573-458X.1000108

    Article  Google Scholar 

  • Mahato, M. K., Singh, P. K., Tiwari, A. K., & Singh, A. K. (2016). Risk assessment due to intake of metals in groundwater of east Bokaro coalfield, Jharkhand, India. Exposure and Health, 8(2), 265–275. https://doi.org/10.1007/s12403-016-0201-2

    Article  CAS  Google Scholar 

  • Malik, D. S., Jain, C. K., & Yadav, A. K. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science, 7(5), 2113–2136. https://doi.org/10.1007/s13201-016-0401-8

    Article  CAS  Google Scholar 

  • Malini, S., Kumar, S. V., Hariharan, R., Bharathi, A. P., Devi, P. R., & Hemananthan, E. (2020). Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Materials Today: Proceedings, 21, 828–832. https://doi.org/10.1016/j.matpr.2019.07.587

    Article  CAS  Google Scholar 

  • Mateo-Sagasta, J., Zadeh, S. M., Turral, H., Burke, J. (2017). Water pollution from agriculture: A global review. http://www.fao.org/3/a-i7754e.pdf.

  • Mirenda, R. J. (1986). Acute toxicity and accumulation of zinc in the crayfish Orconectes virilis (Hagen). Bulletin of Environmental Contamination and Toxicology, 37, 387–394. https://doi.org/10.1007/BF01607778

    Article  CAS  Google Scholar 

  • Mishra, A., Kumar, M., Medhi, K., & Thakur, I. S. (2020). Biomass energy with carbon capture and storage (BECCS). Current developments in biotechnology and bioengineering (pp. 399–427). Elsevier.

    Chapter  Google Scholar 

  • Mishra, S., Kumar, A., Yadav, S., & Singhal, M. K. (2018). Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis, India. Sustainable Water Resources Management, 4(3), 573–581. https://doi.org/10.1007/s40899-017-0141-4

    Article  Google Scholar 

  • Mohiuddin, K., Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48(4), 282–291.

    Google Scholar 

  • National Institute of Hydrology (NIH) (2010). Water Resources of India. NIH, Roorkee, Uttarakhand.

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139. https://doi.org/10.1038/333134a0

    Article  CAS  Google Scholar 

  • O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2006). Design of a novel cellulose-based adsorbent for use in heavy metal recovery from aqueous waste streams. WIT Transactions on Ecology and the Environment. https://doi.org/10.2495/WP060481

    Article  Google Scholar 

  • Pahade, V., & Sharma, A. K. (2015). Manganese removal by low cost adsorbent from synthetic wastewater—A review. International Journal of Engineering Research, 4(3), 111–114. https://doi.org/10.17950/ijer/v4s3/305

    Article  Google Scholar 

  • Parab, H., Joshi, S., Shenoy, N., et al. (2006). Determination of kinetic and equilibrium parameters of the batch adsorption of Co (II), Cr (III) and Ni (II) onto coir pith. Process Biochemistry, 41(3), 609–615. https://doi.org/10.1016/j.procbio.2005.08.006

    Article  CAS  Google Scholar 

  • Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 397–407. https://doi.org/10.1016/j.saa.2014.08.056

    Article  CAS  Google Scholar 

  • Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001

    Article  Google Scholar 

  • Pekey, H., Karakaş, D., & Bakoǧlu, M. (2004). Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, 49(9–10), 809–818. https://doi.org/10.1016/j.marpolbul.2004.06.029

    Article  CAS  Google Scholar 

  • Prabha, J., Kumar, M., & Tripathi, R. (2021). Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: A review. Bioremediation for Environmental Sustainability. https://doi.org/10.1016/B978-0-12-820318-7.00017-4

    Article  Google Scholar 

  • Rahman, M. S., Molla, A. H., Saha, N., & Rahman, A. (2012). Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chemistry, 134(4), 1847–1854. https://doi.org/10.1016/j.foodchem.2012.03.099

    Article  CAS  Google Scholar 

  • Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30(6), 1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  Google Scholar 

  • Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry, 6(2), 523–530.

    Article  CAS  Google Scholar 

  • Rampley, C. P. N., Whitehead, P. G., Softley, L., Hossain, M. A., Jin, L., David, J., & Alabaster, G. (2020). River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Science of the Total Environment, 703, 134760. https://doi.org/10.1016/j.scitotenv.2019.134760

    Article  CAS  Google Scholar 

  • Rawat, K. S., Bala, A., Singh, S. K., & Pal, R. K. (2017). Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agricultural Water Management, 187, 200–209. https://doi.org/10.1016/J.AGWAT.2017.03.015

    Article  Google Scholar 

  • Recillas, S., García, A., González, E., Casals, E., Puntes, V., Sánchez, A., & Font, X. (2011). Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: Toxicity of nanoparticles and derived compounds. Desalination, 277(1–3), 213–220. https://doi.org/10.1016/j.desal.2011.04.036

    Article  CAS  Google Scholar 

  • Rodríguez-Tapia, L., & Morales-Novelo, J. A. (2017). Bacterial pollution in river waters and gastrointestinal diseases. International Journal of Environmental Research and Public Health, 14(5), 479. https://doi.org/10.3390/ijerph14050479

    Article  Google Scholar 

  • Saha, P., & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment: An International Journal, 25(4), 966–987. https://doi.org/10.1080/10807039.2018.1458595

    Article  CAS  Google Scholar 

  • Salati, S., & Moore, F. (2010). Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environmental Monitoring and Assessment, 164(1–4), 677–689. https://doi.org/10.1007/s10661-009-0920-y

    Article  CAS  Google Scholar 

  • Samrot, A. V., Angalene, J., Roshini, S. M., Raji, P., Stefi, S. M., Preethi, R., & Madankumar, A. (2019). Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. Journal of Cluster Science, 30(6), 1599–1610. https://doi.org/10.1007/s10876-019-01602-y

    Article  CAS  Google Scholar 

  • Sander, K., Lohse, J., Pirntke, U. (2000). Heavy metals in vehicles. Report compiled for the Directorate general environment, nuclear safety and civil protection of the commission of the European communities. Accessed 27 Mar 2000.

  • Saraswat, S., & Rai, J. P. N. (2009). Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chemistry and Ecology, 25(1), 1–11. https://doi.org/10.1080/02757540802657185

    Article  CAS  Google Scholar 

  • Setia, R., Dhaliwal, S. S., Kumar, V., Singh, R., Kukal, S. S., & Pateriya, B. (2020). Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environmental Pollution, 265, 114907. https://doi.org/10.1016/j.envpol.2020.114907

    Article  CAS  Google Scholar 

  • Setia, R., Lamba, S., Chander, S., Kumar, V., Dhir, N., Sharma, M., & Pateriya, B. (2021a). Hydrochemical evaluation of surface water quality of Sutlej river using multi-indices, multivariate statistics and GIS. Environmental Earth Sciences, 80(17), 1–17. https://doi.org/10.1007/s12665-021-09875-1

    Article  CAS  Google Scholar 

  • Setia, R., Lamba, S., Chander, S., Kumar, V., Singh, R., Litoria, P. K., & Pateriya, B. (2021b). Spatio-temporal variations in water quality, hydrochemistry and its controlling factors in a perennial river in India. Applied Water Science, 11(11), 1–15. https://doi.org/10.1007/s13201-021-01504-3

    Article  CAS  Google Scholar 

  • Sharma, D., & Bharat, A. (2009). Conceptualizing risk assessment framework for impacts of climate change on water resources. Current Science, 96(8), 1044–1052.

    Google Scholar 

  • Shikazono, N., Tatewaki, K., Mohiuddin, K. M., Nakano, T., & Zakir, H. M. (2012). Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environmental Geochemistry and Health, 34(SUPPL. 1), 13–26. https://doi.org/10.1007/s10653-011-9409-z

    Article  CAS  Google Scholar 

  • Shil, S., & Singh, U. K. (2019). Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecological Indicators, 106, 105455. https://doi.org/10.1016/j.ecolind.2019.105455

    Article  CAS  Google Scholar 

  • Shukla, A. K., Singh, Y. K., & Pandey, V. K. (2020). Phytoremediation of pollutants from soil. Plant responses to soil pollution (pp. 155–161). Springer.

    Google Scholar 

  • Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals (Vol. 32). Berlin: springer.

  • Sindern, S., Tremöhlen, M., Dsikowitzky, L., Gronen, L., Schwarzbauer, J., Siregar, T. H., Ariyani, F., & Irianto, H. E. (2016). Heavy metals in river and coast sediments of the Jakarta Bay region (Indonesia)—Geogenic versus anthropogenic sources. Marine Pollution Bulletin, 110(2), 624–633. https://doi.org/10.1016/j.marpolbul.2016.06.003

    Article  CAS  Google Scholar 

  • Singh, H., Pandey, R., Singh, S. K., & Shukla, D. N. (2017). Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Applied Water Science, 7(7), 4133–4149. https://doi.org/10.1007/s13201-017-0572-y

    Article  CAS  Google Scholar 

  • Singh, S. (2021). Crisis of water and water in crisis: Some reflections from India. Advances in 21st century human settlements (pp. 143–166). Springer.

    Google Scholar 

  • Sinha, S. N., Biswas, M., Paul, D., & Rahaman, S. (2011). Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnology Bioinformatics and Bioengineering, 1(3), 381–386.

    Google Scholar 

  • Smith, I. C., Ferguson, T. L., & Carson, B. L. (1975). Metals in new and used petroleum products. In T. F. Yeh (Ed.), The role of trace metals in petroleum. Ann Arbor Science Publishers.

    Google Scholar 

  • Soylak, M., Elci, L., Akkaya, Y., & Dogan, M. (2002). On-line preconcentration system for lead determination in water and sediment samples by flow injection-flame atomic absorption spectrometry. Analytical Letters, 35, 487–499.

    Article  CAS  Google Scholar 

  • Soylak, M., & Türkoglu, O. (1999). Trace metal accumulation caused by traffic in an agricultural soil near a motorway in Kayseri, Turkey. Journal of Trace and Microprobe Techniques, 17(2), 209–217.

    CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  • Suthar, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessment of metals in water and sediments of Hindon River, India: Impact of industrial and urban discharges. Journal of Hazardous Materials, 171(1–3), 1088–1095. https://doi.org/10.1016/j.jhazmat.2009.06.109

    Article  CAS  Google Scholar 

  • Tabesh, S., Davar, F., & Loghman-Estarki, M. R. (2018). Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. Journal of Alloys and Compounds, 730, 441–449. https://doi.org/10.1016/j.jallcom.2017.09.246

    Article  CAS  Google Scholar 

  • Tadepalli, S., Murthy, K. S. R., & Rakesh, N. N. (2016). Removal of Cu (II) and Fe (II) from Industrial waste water using orange peel as adsorbent in batch mode operation. International Journal of Chemistry Technology Research, 9(5), 290–299.

    CAS  Google Scholar 

  • Taghinia Hejabi, A., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182(1–4), 1–13. https://doi.org/10.1007/s10661-010-1854-0

    Article  CAS  Google Scholar 

  • Thukral, A.K., Bhardwaj, R., Kaur, R. (2005). Water quality indices. In: Statistical Accounting of Water Resources, Central Statistical Organization, Ministry of Statistics and Programme Implementation. GoI, New Delhi.

  • Tiwari, A. K., De Maio, M., Singh, P. K., & Mahato, M. K. (2015). Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bulletin of Environmental Contamination and Toxicology, 95(3), 304–310. https://doi.org/10.1007/s00128-015-1558-9

    Article  CAS  Google Scholar 

  • Tiwari, R., Botle, A., Bhat, S. A., Singh, P. P., & Taneja, A. (2022). Chemical characterization and health risk assessement of size segreated PM at world heritage site, Agra. Cleaner Chemical Engineering, 3, 100049. https://doi.org/10.1016/j.clce.2022.100049

    Article  Google Scholar 

  • Tiwari, R., Singh, P. P., & Taneja, A. (2020a). Chemical characterization of particulate matter at traffic prone roadside environment in Agra, India. Pollution, 6(2), 237–252. https://doi.org/10.22059/poll.2019.289418.683

    Article  CAS  Google Scholar 

  • Tiwari, R., Singh, P. P., & Taneja, A. (2020b). Health risk assessment in size segregated PM at urban traffic site in Agra. Indian Journal of Environmental Protection, 40(9), 934–940.

    Google Scholar 

  • Ugbede, F. O., Aduo, B. C., Ogbonna, O. N., & Ekoh, O. C. (2020). Natural radionuclides, heavy metals and health risk assessment in surface water of Nkalagu river dam with statistical analysis. Scientific African, 8, e00439. https://doi.org/10.1016/j.sciaf.2020.e00439

    Article  Google Scholar 

  • USDI (2003) Mineral commodity summary 2003. US Geological Survey, US Department of the Interior.

  • USEPA (US Environmental Protection Agency). (1980). Exposure and risk assessment for zinc. Office of water Regulations and Standards (WH-553). EPA440481016. PB85212009.

  • USEPA United States Environmental Protection Agency (1989). Risk assessment guidance for superfund, vol. 1. human health evaluation manual part A interim final. EPA/540/1e89/002. Office of Emergency and Remedial Response.

  • USEPA (2004). Risk assessment guidance for superfund vol. 1 Human health evaluation manual, part E, Supplemental guidance from dermal risk assessment. Office of emergency and remedial response.

  • USEPA (2005). Guidelines for carcinogen risk assessment. Risk assessment forum. U.S. Environmental Protection Agency.

  • USEPA (2013). Regional screening level (RSL) Summary Table.

  • Ustaoğlu, F., Tepe, Y., & Taş, B. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113, 105815. https://doi.org/10.1016/j.ecolind.2019.105815

    Article  CAS  Google Scholar 

  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 24, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126

    Article  CAS  Google Scholar 

  • Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280. https://doi.org/10.1007/s13201-016-0472-6

    Article  CAS  Google Scholar 

  • Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440

    Article  CAS  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Gaikwad, S. K., Muley, A. A., & Varade, A. M. (2018). Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin, Nashik, India. Modeling Earth Systems and Environment, 4(3), 969–980. https://doi.org/10.1007/s40808-018-0496-z

    Article  Google Scholar 

  • Wei, H., Huang, M., Quan, G., Zhang, J., Liu, Z., & Ma, R. (2018). Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. Chemosphere, 210, 1013–1020. https://doi.org/10.1016/j.chemosphere.2018.07.129

    Article  CAS  Google Scholar 

  • WHO. (2017). Guidelines for drinking-water quality, fourth ed. incorporating the first addendum, Geneva.

  • World Resources Institute (WRI). (2007). Estimates of water resources and freshwater ecosystems—Actual renewable water resources for 2007. WRI.

    Google Scholar 

  • Zhang, L., Yanjun, W. U., Xiaoyan, Q. U., Zhenshan, L., & Jinren, N. (2009). Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. Journal of Environmental Sciences, 21(6), 764–769. https://doi.org/10.1016/S1001-0742(08)62338-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Aditi Chettiar for proofreading the manuscript. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AB was involved in concept formation, data collection, data analysis, and first draft writing. SS helped in data collection, data investigation, editing, and manuscript paraphrasing. RT contributed to examination and thorough analysis of manuscript data. SA & GB approved final versions of the manuscript.

Corresponding author

Correspondence to Gayatri R. Barabde.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botle, A., Salgaonkar, S., Tiwari, R. et al. Brief status of contamination in surface water of rivers of India by heavy metals: a review with pollution indices and health risk assessment. Environ Geochem Health 45, 2779–2801 (2023). https://doi.org/10.1007/s10653-022-01463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01463-x

Keywords

Navigation