Skip to main content
Log in

Evaluating the retention capacity of a new subtropical run-of-river reservoir

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In man-made reservoirs, the sedimentation and assimilation of elements usually prevail as a result of a decrease in the flow regime and an increase in the hydraulic retention time. Thus, the retention capacity derives from hydraulic flushing, as well as chemical and biological reactions. The aim of this study was to assess the element retention capacity of a new subtropical reservoir (Piraju Reservoir situated in São Paulo State, Brazil). Limnological monitoring was performed over four consecutive years (August 2003 to August 2007). We determined 19 variables (chemical, physical, and biological) every 3 months at the inlet (Paranapanema River) and outlet water of the Piraju Reservoir. For each variable, a mass balance was performed and the alpha parameter (i.e., retention capacity) was defined resulting in 323 determinations. From these results, only 10% led to the occurrence of element retention. Retention events were episodic; the fecal coliforms (seven times) and the N-NH4 (six times) were the variables that presented the highest number of retentions. The results show that different variables can be linked to both the retention and release of elements from the reservoirs. The results show the great significance of the physical processes (in this case, hydraulic retention time and mixing regime) in determining the element retention and exportation from the Piraju Reservoir. The water temperature was a secondary variable for the processes related to retention (such as chemical reactions and biological assimilations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn, J. M., Jung, K. Y., & Shin, D. (2017). Effects of coordinated operation of weirs and reservoirs on the water quality of the Geum River. Water, 9, 423.

    Article  Google Scholar 

  • Ambrosetti, W., Barbanti, L., & Sala, N. (2003). Residence time and physical processes in lakes. Journal of Limnology, 62(1), 1–15.

    Article  Google Scholar 

  • Anderson, K. L., Whitlockm, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71(6), 3041–3048.

    Article  CAS  Google Scholar 

  • ANEEL - Agência Nacional de Energia Elétrica. (2005). Atlas de Energia Elétrica do Brasil (2ª ed.). Brasília: Brazilian National Agency of Electric Energy.

    Google Scholar 

  • APHA, AWWA, WEF - American Public Health Association, American Water Works Association and Water Environment Federation. (1998). Standard methods for the examination of water and wastewater. Washington DC: APHA, AWWA, WEF.

    Google Scholar 

  • Araújo, F. G., Azevedo, M. C. C., & Ferreira, M. N. L. (2011). Seasonal changes and spatial variation in the water quality of a eutrophic tropical reservoir determined by the inflowing river. Lake and Reservoir Management, 27(4), 343–354.

    Article  Google Scholar 

  • Arcifa, M. S., & Esguícero, A. L. H. (2012). The fish fauna in the fish passage at the Ourinhos Dam, Paranapanema River. Neotropical Ichthyology, 10(4), 715–722.

    Article  Google Scholar 

  • Bartoszek, L., & Koszelnik, P. (2016). The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus, 5, 1157.

    Article  Google Scholar 

  • Bianchini, I., Jr., & Cunha-Santino, M. B. (2014). Dynamics of colonization and collapse of macrophyte community during the formation of a tropical reservoir. Fundamental and Applied Limnology, 184(2), 141–150.

    Article  Google Scholar 

  • Bianchini, I., Jr., Cunha-Santino, M. B., & Panhota, R. S. (2011). Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil). Brazilian Journal of Biology, 71(1), 27–35.

    Article  Google Scholar 

  • Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., & Slomp, C. P. (2013). Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 10, 1–22.

    Article  Google Scholar 

  • Cappellen, P., & Maavara, T. (2016). Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrology & Hydrobiology, 16(2), 106–111.

    Article  Google Scholar 

  • Chapra, S. C., & Reckhow, K. H. (1983). Engineering approaches for lake management. Volume 2: Mechanistic modeling. Woburn: Butterworth Publishers.

    Google Scholar 

  • Cunha, D. G. F., Calijuri, M. C., & Doddys, W. K. (2014). Trends in nutrient and sediment retention in Great Plains reservoirs (USA). Environmental Monitoring and Assessment, 186(2), 1143–1155.

    Article  CAS  Google Scholar 

  • Cunha-Santino, M. B., Bitar, A. L., & Bianchini, I., Jr. (2013). Chemical constraints on new man-made lakes. Environmental Monitoring and Assessment, 185(12), 10177–10190.

    Article  CAS  Google Scholar 

  • Cunha-Santino, M. B., Fushita, A. T., & Bianchini, I., Jr. (2017). A modeling approach for a cascade of reservoirs in the Juquiá-Guaçu River (Atlantic Forest, Brazil). Ecological Modelling, 356, 48–58.

    Article  Google Scholar 

  • Figueiredo, D. M., & Bianchini, I., Jr. (2008). Limnological patterns of the filling and stabilization phases in the Manso multiple-use Reservoir (MT). Acta Limnologica Brasiliensia, 20(4), 277–290.

    Google Scholar 

  • Henry, R. (1999). Thermal regime and oxygen patterns in reservoirs. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 125–151). Backhuys: Leiden.

    Google Scholar 

  • Henry, R., Nogueira, M. G., Pompeo, M. L., & Mosquini-Carlos, V. (2006). Annual and short-term variability in primary productivity by phytoplankton and correlated abotic factors in the Jurumirim Reservoir (São Paulo, Brazil). Brazilian Journal of Biology, 66(1), 239–261.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., & Löffler, H. (1956). The thermal classification of lakes. Proceedings of the National Academy of Sciences of the United States of America, 42(2), 84–86.

    Article  CAS  Google Scholar 

  • Jorcin, A., & Nogueira, M. G. (2008). Benthic macroinvertebrates in the Paranapanema reservoir cascade (Southeast Brazil). Brazilian Journal of Biology, 68(4), 1013–1024.

    Article  CAS  Google Scholar 

  • Jørgensen, S. E., & Bendoricchio, G. (2001). Fundamental of ecological modelling. Amsterdam: Elsevier.

    Google Scholar 

  • Jossette, G., Leporcq, B., Sanchez, N., & Philippon, X. (1999). Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry, 47(2), 119–146.

    Article  CAS  Google Scholar 

  • Kerimoglu, O., & Rinke, K. (2013). Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resources Research, 49(11), 7518–7527.

    Article  Google Scholar 

  • Kimmel, B. L., Lind, O. T., & Paulson, L. J. (1990). Reservoir primary production. In K. W. Thorton, B. L. Kimmel, & F. E. Payne (Eds.), Reservoir limnology: ecological perspectives (pp. 133–193). New York: Wiley-Interscience Publication.

    Google Scholar 

  • Kõiv, T., Nõges, T., & Laas, A. (2011). Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia, 660(1), 105–115.

    Article  Google Scholar 

  • Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., et al. (2014). Sustainable sediment management in reservoirs and regulate drivers: Experiences from five continents. Earth’s Future, 2(5), 256–280.

    Article  Google Scholar 

  • Köppen, W. (1931). Grundriss der Klimakunde. Berlin: De Gruyter.

    Google Scholar 

  • Koroleff, F. (1976). Determination of ammonia. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 126–133). New York: Verlag Chemie GmbH.

    Google Scholar 

  • Lu, T., Chen, N., Duan, S., Chen, Z., & Huang, B. (2016). Hydrological controls on cascade reservoirs regulating phosphorus retention and downriver fluxes. Environmental Science and Pollution Research International, 23(23), 24166–24177.

    Article  CAS  Google Scholar 

  • Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15603–15608.

    CAS  Google Scholar 

  • Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water chemistry: some revised methods for limnologists. Cumbria: Freshwater Biological Association.

    Google Scholar 

  • Marren, P. M., Grove, J. R., Webb, A., & Stewardson, M. J. (2014). The potential for dams to impact lowland meandering river floodplain geomorphology. The Scientific World Journal, 6, 309673.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2003). Ecosystems and human well-being: a framework for assessment. Washington, DC: World Resources Institute.

    Google Scholar 

  • Némery, J., Gratiot, N., Doan, P. T. K., Duvert, C., Alvarado-Villanueva, R., & Duwig, C. (2015). Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquatic Sciences, 78(1), 171–189.

    Article  Google Scholar 

  • Novaes, L. F., Pruski, F. F., Queiroz, D. O., Rodriguez, R. G., Silva, D. D., & Ramos, M. M. (2009). Modelo para a quantificação da disponibilidade hídrica: Parte 2 - Análise do comportamento do modelo para a estimativa da Q7,10 na Bacia do Paracatu. Brazilian Journal of Water Resources, 14(1), 27–39.

    Google Scholar 

  • Nürnberg, G. K. (2009). Assessing internal phosphorus load – problems to be solved. Lake and Reservoir Management, 25(4), 419–432.

    Article  Google Scholar 

  • Oliver, A. A., Dahlgren, R. A., & Deasb, M. L. (2014). The upside-down river: reservoirs, algal blooms, and tributaries affect temporal and spatial patterns in nitrogen and phosphorus in the Klamath River, USA. Journal of Hydrology, 519(A), 164–176.

    Article  CAS  Google Scholar 

  • Orlob, G. T., Roesner, L. A., & Norton, W. R. (1969) Mathematical models for prediction of thermal energy changes in impoundments. EPA water pollution control research series, US Environmental Protection Agency. Washington DC: FWQA report no. 16130 EXT 12/69.

  • Politi, E., & Prairie, Y. T. (2018). The potential of earth observation I modeling nutrient loading and water quality in lakes of southern Québec, Canada. Aquatic Sciences, 80, 8.

    Article  Google Scholar 

  • Power, M. E., Dietrich, W. E., & Finlay, J. C. (1996). Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management, 20(6), 887–895.

    Article  CAS  Google Scholar 

  • Ran, X., Bouwman, L., Yu, Z., Beusen, A., Chen, H., & Yao, Q. (2017). Nitrogen transport, transformation, and retention in the three gorges reservoir: a mass balance approach. Limnology and Oceanography, 62, 2323–2337.

    Article  CAS  Google Scholar 

  • Rubio-Arias, H., Contreras-Caraveo, M., Quintana, R. M., Saucedo-Teran, R. A., & Pinales-Munguia, A. (2012). An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. International Journal of Environmental Research and Public Health, 9(5), 1687–1698.

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). Geochemical atlas of Europe, part 1, background information, methodology and maps. In R. R. Salimen, J. Plant, & R. Shaun (Eds.), Geological survey of Finland. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Schiller, D., Aristi, I., Ponsatí, L., Arroita, M., Acuña, V., Elosegi, A., & Sabater, S. (2016). Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Science of the Total Environment, 540, 168–177.

    Article  Google Scholar 

  • Sironić, A., Barešić, J., Horvatinčić, N., Brozinčević, A., Vurnek, M., & Kapelj, S. (2017). Changes in the geochemical parameters of karst lakes over the past three decades - The case of Plitvice Lakes, Croatia. Applied Geochemistry, 78, 12–22.

    Article  Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1–3), 135–145.

    Article  Google Scholar 

  • Straškraba, M. (1999). Retention time as a key variable of reservoir limnology. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 505–528). Backhuys: Leiden.

    Google Scholar 

  • Sumi, T., & Hirose, T. (2009). Accumulation of sediment in reservoirs. In Y. Takahasi (Ed.), Water storage, transport, and distribution (pp. 224–252). Oxford: UNESCO-IHE/EOLSS Publishers Co..

    Google Scholar 

  • Teodoru, C., & Wehrli, B. (2005). Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River. Biogeochemistry, 76(3), 539–565.

    Article  CAS  Google Scholar 

  • Thomann, R. V., & Müller, J. A. (1987). Principles of surface water quality modeling and control. New York: Haper & Row.

    Google Scholar 

  • UFSCar/CBA. (2008). Plano de controle ambiental UHE Piraju: monitoramento da qualidade de águas superficiais e monitoramento e controle das macrófitas aquáticas e de florações de algas. FAI/UFSCar, São Carlos, 115p (Relatório Técnico Final).

  • Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: a review. The Science of the Total Environment, 651(part 2), 2985–3001.

    Article  Google Scholar 

  • Vollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorous as factors in eutrophication. Paris: Organization for Economic Cooperation and Development, DAS/CSI/68.27.

    Google Scholar 

  • Wang, S., Qian, X., Han, B. P., Luo, L. C., & Hamilton, D. P. (2012). Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research, 46(8), 2591–2604.

    Article  CAS  Google Scholar 

  • Wei, G., Yang, Z., Cui, B. S., Li, B., Chen, H., Bai, J. H., & Dong, S. K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23(9), 1763–1780.

    Article  Google Scholar 

  • Ye, L., Cai, Q., Zhang, M., Tan, L., & Shen, H. (2016). Ecosystem metabolism and the driving factors in Xiangxi Bay of three gorges reservoir, China. Freshwater Sci, 35(3), 826–833.

    Article  Google Scholar 

  • Zeng, Q., Qin, L., Bao, L., Li, Y., & Li, X. (2016). Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environmental Science and Pollution Research, 23(20), 21008–21019.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Companhia Brasileira de Alumínio (CBA-Votorantim), currently Votorantim Energia, for providing the data of the reservoir (BQ, MOH, DA, A, V, flow, and rainfall), for subsiding the field sampling, and for the concession of limnological data.

Funding

This study is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant number: 305263/2014-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irineu Bianchini Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, I., Fushita, Â.T. & Cunha-Santino, M.B. Evaluating the retention capacity of a new subtropical run-of-river reservoir. Environ Monit Assess 191, 161 (2019). https://doi.org/10.1007/s10661-019-7295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7295-5

Keywords

Navigation