Skip to main content
Log in

Chemical constraints on new man-made lakes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The formation of reservoirs often affects water quality strongly, with the changes in the physicochemical properties being ascribed to decomposition of remaining organic matter arising from leaching and (biological and chemical) breakdown processes. In this study, experiments under laboratory conditions were performed to show that the nature of the course particulate organic matter (CPOM; i.e., leaves, branches, barks, and litter) determines the decomposition kinetics in new reservoirs. Effects on the water quality can be of short-, mid-, and long-term duration for all types of CPOM, as indicated in the mathematical modeling of the decomposition kinetics. Leaves and litter displayed the shortest half-life times (51 and 40 days, respectively) and the highest potential of leaching/oxidation of labile compounds (19 and 21 %, respectively). On the other hand, decomposition of branches and barks generated the lowest oxygen consumption (74 and 44 mg oxygen/g dry mass (DM), respectively). During formation of the reservoir, the incorporation and decomposition of organic matter prevailed over material exportation. Therefore, in addition to a decrease in oxygen availability the concentration of biochemical oxygen demand (BOD) and nutrients increased. After the filling stage, there was significant loss of organic matter via oxidation, sedimentation, biological assimilation, and export, thus causing the BOD concentration and the fertility of the water to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., et al. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007.

    Article  Google Scholar 

  • Agostinho, A. A., Miranda, L. E., Bini, L. M., Gomes, L. C., Thomaz, S. M., & Suzuki, H. I. (1999). Patterns of colonization in Neotropical reservoirs, and prognoses on aging (1999). In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 227–265). São Carlos: Brazilian Academy of Science/IIE/Backhuys.

    Google Scholar 

  • Amaral, B. D., & Petrere, M., Jr. (1994). Itaipu reservoir (Brazil): impacts of the impoundment on the fish fauna and fisheries. In I. G. Cowx (Ed.), Rehabilitation of island fisheries (pp. 161–184). Oxford: Fishing News Books.

    Google Scholar 

  • Amon, R. M. W., & Benner, R. (1996). Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta, 60(10), 1783–1792.

    Article  CAS  Google Scholar 

  • Antonio, R. M., & Bianchini, I., Jr. (2002). The effect of temperature on the glucose cycling and oxygen uptake rates in the Infernão lagoon water, State of São Paulo, Brazil. Acta Scientiarum Biological Science, 24(2), 291–296.

    CAS  Google Scholar 

  • Antonio, R. M., & Bianchini, I., Jr. (2003). Methodological tests of a heterotrophy index for aquatic ecosystems. Brazilian Journal of Biology, 63(3), 373–380.

    Article  CAS  Google Scholar 

  • Ball, J., Weldon, C. & Crocker, B. (1975). Effects of original vegetation on reservoir water quality. Project Texas: Texas Water Resources Institute, (Texas A&M University). A-025-Texas/64, Texas.

  • Baxter, R. M., & Glaude, P. (1980). Environmental effects of dams and impoundments in Canada: experience and prospects. Series Canadian Bulletin of Fisheries and Aquatic Science, 205. Ottawa: Department of Fisheries and Oceans.

    Google Scholar 

  • Bianchini, I., Jr., & Cunha-Santino, M. B. (2011). Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation. Ecological Modelling, 222(7), 1263–1271.

    Article  Google Scholar 

  • Bianchini, I., Jr., Cunha-Santino, M. B., & Panhota, R. S. (2011). Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil). Brazilian Journal of Biology, 71(1), 27–35.

    Article  Google Scholar 

  • Bitar, A. L., & Bianchini, I., Jr. (2002). Mineralization assays of some organic resources of aquatic systems. Brazilian Journal of Biology, 62(4a), 557–564.

    Article  CAS  Google Scholar 

  • Bitar, A. L., Antonio, R. M., & Bianchini, I., Jr. (2002). Degradação anaeróbia de folhas, galhos, cascas e serapilheira. Acta Limnologica Brasiliensia, 14(2), 17–26.

    Google Scholar 

  • Born, S. M., Wirth, T. L., Brick, E. M. & Peterson, J. P. (1973). Restoring the recreational potential of small impoundments. The Marion Millpond experience. Technical Bulletin. Department of Natural Resources, Report No. 71, Madison.

  • Carvalho, P., Thomaz, S. M., & Bini, L. M. (2005). Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae). Brazilian Journal of Biology, 65(1), 767–777.

    Article  Google Scholar 

  • Castro, R. M. C., & Arcifa, M. F. (1987). Comunidades de peixes de reservatórios do sul do Brasil. Revista Brasileira de Biologia, 47(4), 493–500.

    Google Scholar 

  • CNEC/ELN-CNEC Engenharia/Centrais Elétricas do Norte do Brasil S.A. – Eletronorte. (1987). Estudos de Viabilidade UHE Ji-Paraná: Ensaios de Degradação da Vegetação a ser Submersa (Escala de Laboratório). Technical Report. CNEC/ELN, 1987. MAD-16V-7.510-NT, Brasília.

  • Cunha-Santino, M. B., & Bianchini, I., Jr. (2002a). Humic substance mineralization in a tropical oxbow lake (São Paulo, Brazil). Hydrobiologia, 468(1–3), 33–43.

    Article  Google Scholar 

  • Cunha-Santino, M. B., & Bianchini, I., Jr. (2002b). Estequiometria da decomposição aeróbia de galhos, cascas serapilheira e folhas. In E. L. G. Espíndola, F. F. Mauad, V. Schalch, O. Rocha, N. Felicidade, & A. C. Rietzler (Eds.), Recursos Hidroenergéticos: Usos, Impactos e Planejamento Integrado. Série: Ciências da Engenharia Ambiental (pp. 43–56). São Carlos: Rima.

    Google Scholar 

  • Cunha-Santino, M. B., & Bianchini, I., Jr. (2004). Humic substances mineralization: the variation of pH, electrical conductivity and optical density. Acta Limnologica Brasiliensia, 16(1), 63–75.

    Google Scholar 

  • Davis, M. L., & Cornwell, D. A. (2008). Introduction to environmental engineering. New York: McGraw-Hill.

    Google Scholar 

  • FAI-UFSCar/CESP-Fundação de Apoio Institucional da Universidade Federal de São Carlos. (1998). Projeto básico ambiental, Complexo Hidrelétrico Canoas. Subprograma: Modelagem Matemática – I Ensaios de degradação da Fitomassa. Technical Report. FAI-UFSCar/CESP, São Carlos.

  • Fearnside, P. M. (2005). Do hydroelectric dams mitigate global warming? The case of Brazil's Curuá-Una Dam. Mitigation and Adaptation Strategies for Global Change, 10(4), 675–691.

    Article  Google Scholar 

  • Figueiredo, D. M., & Bianchini, I., Jr. (2008). Limnological patterns of the filling and stabilization phases in the Manso multiple-use Reservoir (MT). Acta Limnologica Brasiliensia, 20(4), 277–290.

    Google Scholar 

  • Fonseca, A. L. S., Bianchini, I., Jr., Pimenta, C. M. M., Soares, C. B. P., & Mangiavacchi, N. (2013). The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia, 703(1), 59–67.

    Article  Google Scholar 

  • Ford, D. E. (1990). Reservoir transport processes. In K. W. Thornton, B. L. Kimmell, & F. E. Payne (Eds.), Reservoir limnology: ecological perspectives (pp. 15–41). New York: Wiley-Interscience.

    Google Scholar 

  • Garzon, C. E. (1984). Water quality in hydroelectric projects: considerations for planning in tropical forest regions. (The World Bank). Technical Paper. Technical Paper no. 20, 1–33, Washington.

  • Gois, K. S., Antonio, R. R., Gomes, L. C., Pelicice, F. M., & Agostinho, A. A. (2012). The role of submerged trees in structuring fish assemblages in reservoirs: two cases studies in South America. Hydrobiologia, 685(1), 109–119.

    Article  Google Scholar 

  • Goodland, R. (1986). Environmental aspects of Amazonian development projects in Brazil. Interciencia, 11(1), 16–24.

    Google Scholar 

  • Hespanhol, I. (1984). Impactos ambientais por reservatórios de água: o caso particular da vegetação inundada. Revista Politécnica, 183, 16–20.

    Google Scholar 

  • Howard-Williams, C., & Howard-Williams, W. (1978). Nutrient leaching from the swamp vegetation of Lake Chilwa, a shallow African lake. Aquatic Botany, 4, 257–267.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1957). Treatise on limnology. Geography, physics and chemistry. New York: Wiley.

    Google Scholar 

  • Kimmel, B. L., Lind, O. T., & Paulson, L. J. (1990). Reservoir primary production. In K. W. Thornton, B. L. Kimmell, & F. E. Payne (Eds.), Reservoir limnology: ecological perspectives (pp. 136–193). New York: Wiley-Interscience.

    Google Scholar 

  • McKinley, V. L., & Vestal, J. R. (1982). Effects of acid on plant litter decomposition in an arctic lake. Applied and Environmental Microbiology, 43(5), 1188–1195.

    CAS  Google Scholar 

  • Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: linkages to trace gases and aerobic processes. In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317–424). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Moore, P. A., Jr., Reddy, K. R., & Graetz, D. A. (1992). Nutrient transformations in sediments influenced by oxygen supply. Journal of Environmental Quality, 21(3), 387–393.

    Article  CAS  Google Scholar 

  • Moran, M. A., & Hodson, R. E. (1989). Formation and bacterial utilization of dissolved organic carbon derived from detrital lignocellulose. Limnology and Oceanography, 34(6), 1034–1047.

    Article  CAS  Google Scholar 

  • MDK/CENCO/COPEL-MDK Engenharia de Projetos/Consórcio de Engenheiros Consultores/Companhia de Energia Elétrica do Paraná (1988). Usina Hidroelétrica de Segredo-Programa de Caracterização da Área Diretamente Afetada/Inundação da Vegetação. Technical Paper. MDK/CENCO/COPEL, Curitiba.

  • Petrere, M., Jr. (1996). Fisheries in large tropical reservoirs in South America. Lakes and Reservoirs: Research and Management, 2(1–2), 111–133.

    Article  Google Scholar 

  • Pimenta, C. M. M. (2007). Evolução temporal da composição iônica e do carbono orgânico durante a decomposição anaeróbia de folhas, galhos e serapilheira. [Dissertation]. Rio de Janeiro (Brazil): PPG Engenharia Ambiental/Universidade Estadual do Rio de Janeiro

  • Ploskey, G. R. (1985). Impacts of terrestrial vegetation and preimpoundment clearing on reservoir ecology and fisheries in USA and Canada. Technical Paper. FAO Fisheries and Aquaculture Technical Paper Technical Paper Report no 258, Rome.

  • Pomeroy, L. R., & Wiebe, W. J. (1988). Energetic of microbial food webs. Hydrobiologia, 159(1), 7–18.

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flanney, B. P. (2007). Numerical recipes: The art of scientific computing. New York: Cambridge University Press.

    Google Scholar 

  • Rosa, L. P., Santos, M. A., Matvienko, B., Sikar, E., Lourenço, R. S. M., & Menezes, C. F. S. (2003). Biogenic gas production from major Amazon reservoirs, Brazil. Hydrological Processes, 17(7), 1443–1450.

    Article  Google Scholar 

  • Rosa, L. P., Santos, M. A., Matvienko, B., & Sika, E. (2004). Greenhouse gas emissions from hydroelectric reservoirs in tropical regions. Climatic Change, 66(1–2), 9–21.

    Article  CAS  Google Scholar 

  • Roué-Le Gall, A., Poulin, M., Debroas, D., & Flipo, N. (2009). A physical-microbial food web coupled model to study the evolution of the ecological functioning of a new reservoir after its flooding (Sep, Puy de Dôme). Ecological Modelling, 220(6), 841–856.

    Article  Google Scholar 

  • Santos, M. G., Cunha-Santino, M. B., & Bianchini, I., Jr. (2006). Photodegradation, chemical and biologic oxidations from mineralization of Utricularia breviscapa leachate. Acta Limnologica Brasiliensia, 18(4), 347–355.

    Google Scholar 

  • Schlegel, H. G. (1975). Microbiología general. Barcelona: Omega.

    Google Scholar 

  • Schlesinger, W. H. (1997). Biogeochemistry-an analysis of global change. San Diego: Academic.

    Google Scholar 

  • Steinberg, C. E. W. (2003). Ecology of humic substances in freshwaters. Heidelberg: Springer.

    Book  Google Scholar 

  • Tundisi, J. G., & Matsumura-Tundisi, T. (2003). Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia, 500(1–3), 231–242.

    Article  Google Scholar 

  • Van der Heide, J. (1982). Lake Brokopondo. Filling phase limnology of a man-madelake in the humid tropics. [Doctoral Thesis]. Vrije Universiteit, Amsterdam

  • Weissenberger, S., Lucotte, M., Houel, S., Soumis, N., Duchemin, E., & Canuel, R. (2010). Modeling the carbon dynamics of the La Grande hydroelectric complex in northern Quebec. Ecological Modelling, 221(4), 610–620.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology-lake and river ecosystems. San Diego: Academic.

    Google Scholar 

  • Zepp, R. G., Wolfe, N. L., Baughman, G. L., & Hollis, R. C. (1977). Singlet oxygen in natural waters. Nature, 267, 421–423.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Companhia Energética de São Paulo (CESP) for the aid in the achievement of water and of plant samples and to Dr. Osvaldo N. Oliveira Jr. (IFSC-USP) for his critical proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela B. Cunha-Santino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha-Santino, M.B., Bitar, A.L. & Bianchini, I. Chemical constraints on new man-made lakes. Environ Monit Assess 185, 10177–10190 (2013). https://doi.org/10.1007/s10661-013-3322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3322-0

Keywords

Navigation