Skip to main content

Advertisement

Log in

Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15N–NO3 and δ 18O–NO3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L−1 in surface water and from 0.5 to 100 mg L−1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amberger, A., & Schmidt, H. L. (1987). Naturliche Isotopengehalte von Nitat als Indikatoren fur dessen Herkunft. Geochimica et Cosmochimica Acta, 51, 2699–2705.

    Article  CAS  Google Scholar 

  • Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—a literature review. Critical Reviews in Environmental Science and Technology, 37, 381–487.

    Article  CAS  Google Scholar 

  • Bohkle, J. K., & Denver, J. M. (1995). Combined use of groundwater dating, chemical and isotopic analysis to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resource Research, 31(9), 2319–2339.

    Article  Google Scholar 

  • Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H.-L. (1990). Using isotope fractionation of nitrate–nitrogen and nitrate–oxygen for evaluation of microbial denitrification in sandy aquifer. Journal of Hydrology, 114, 413–424.

    Article  Google Scholar 

  • Canter, L. W. (1997). Nitrates in groundwater. New York: CRC Press Inc..

    Google Scholar 

  • Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74, 4905–4912.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.

    Article  CAS  Google Scholar 

  • Curt, M. D., Aguado, D., Sanchez, G., Begiriego, M., & Fernandez, J. (2004). Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air and Soil Pollution, 151, 135–142.

    Article  CAS  Google Scholar 

  • Dmytrenko, T.V. (2004). Increasing ecological safety of spring waters use on the example of the Kharkiv region. Manuscript of PhD thesis. Ukrainian research Institute of the Ecological Problems. Kharkiv, Ukraine (in Russian).

  • ECO (2015). Ecological and environmental passport of the Kharkiv region. Published by the Ministry of the Environmental Protection of Ukraine (in Ukrainian).

  • European Commission (2013). Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on member state reports for the period 2008–2011, Brussels.

  • Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., et al. (2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resource Research, 45 (7), art. no. W00A16.

  • Flipo, N., Even, S., Poulin, M., Thery, S., & Ledoux, E. (2007). Modelling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. Science of the Total Environment, 375, 69–79.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present and future. Biogeochemistry, 70(2), 153–226.

    Article  CAS  Google Scholar 

  • Gambrell, R. P., & Patrick Jr., W. H. (1978). Chemical and microbiological properties of anaerobic soils and sediments. In D. D. Hook & R. M. H. Crawford (Eds.), Plant life in anaerobic environments (pp. 375–423). Michigan: Ann Arbor Science Publishers.

    Google Scholar 

  • Global Land Cover Europe (2000). European Environmental Agency. http://www.eea.europa.eu/data-and-maps/data/global-land-cover-2000-europe.

  • Gooddy, D. C., Macdonald, D. M. J., Lapworth, D. J., Bennett, S. A., & Griffiths, K. J. (2014). Nitrogen sources, transport and processing in peri-urban floodplains. Science of the Total Environment, 494–495, 28–38.

    Article  Google Scholar 

  • Handbook of hydrologist (1979). V.M. Maximov (Ed.). Leningrad: Nedra (in Russian).

  • Katz, B. G., Eberts, S. M., & Kauffman, L. J. (2011). Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. Journal of Hydrology, 397(3–4), 151–166.

    Article  CAS  Google Scholar 

  • Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. (2011). Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science and Technology, 45(19), 8225–8232.

    Article  CAS  Google Scholar 

  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchment. In C. Kendall & J. J. McDonnell (Eds.), Isotope tracers in catchment hydrology (pp. 519–576). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Kendall, C., & McDonnell, J. J. (2003). Isotope tracers in catchment hydrology. Amsterdam: Elsevier.

    Google Scholar 

  • Kendall, C., Elliott, E.M., & Wankel, S.D. (2008). Tracing anthropogenic inputs of nitrogen to ecosystems. R.H. Michener, & K. Lajtka (Eds.). Stable isotopes in ecology and environmental science (pp. 375–449). Blackwell Publishing.

  • Kopáček, J., Hejzlar, J., & Posch, M. (2013). Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010. Environmental Science and Technology, 47, 6400–6407.

    Google Scholar 

  • Kopáček, J., Hejzlar, J., Porcal, P., & Posch, M. (2014). A mass-balance study on chloride fluxes in a large central European catchment during 1900–2010. Biogeochemistry, 120(1–3), 543–550.

    Google Scholar 

  • Jyväsjärvi, J., Marttila, H., Rossi, P. M., Ala-Aho, P., Olofsson, B., Nisell, J., et al. (2015). Climate-induced warming imposes a threat to north European spring ecosystems. Global Change Biology, 21, 4561–4569.

    Article  Google Scholar 

  • El Gaouzi Fatima-Zahra, J., Sebilo, M., Ribstein, P., Plagnes, V., Boeckx, P., Xue, D., et al. (2013). Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Applied Geochemistry, 35, 230–243.

    Article  Google Scholar 

  • Lehosmaa, K., Jyväsjärvi, J., Virtanen, R., Rossi, P. M., Rados, D., Chuzhekova, T., et al. (2016). Does habitat restoration enhance spring biodiversity and ecosystem functions? Hydrobiologia, in press. https://doi.org/10.1007/s10750-016-2760-4.

  • Lockhart, K. M., King, A. M., & Harter, T. (2013). Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. Journal of Contaminant Hydrology, 151, 140–154.

    Article  CAS  Google Scholar 

  • Mariotti, A., Landreau, A., & Simon, A. (1988). 15N biogeochemistry and natural denitrification process in groundwater: application to chalk aquifer of northern France. Geochimica et Cosmochimica Acta, 52(7), 1869–1878.

    Article  CAS  Google Scholar 

  • Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece). Science of the Total Environment, 541(15), 802–814.

    Article  CAS  Google Scholar 

  • Mayer, B., Bollwerk, S. M., Mansfeldt, T., Hütter, B., & Veizer, J. (2001). The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochimica et Cosmochimica Acta, 65, 2743–2756.

    Article  CAS  Google Scholar 

  • Michalski, G., Kolanowski, M., & Riha, K. M. (2015). Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts. Isotopes in Environmental and Health Studies, 51(3), 382–391.

    Article  CAS  Google Scholar 

  • Mohammed, N., Celle-Jeanton, H., Huneau, F., Le Coustumer, P., Lavastre, V., Bertrand, G., et al. (2014). Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France). Journal of Hydrology, 508, 181–196.

    Article  CAS  Google Scholar 

  • Mueller, C., Krieg, R., Merz, R., & Knöller, K. (2015). Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns. Isotopes in Environmental and Health Studies, 52(1–2), 16–74.

    Google Scholar 

  • Nestler, A., Berglund, M., Accoe, F., Duta, S., Xue, D., Boeckx, P., et al. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 18(4), 519–533.

    Article  CAS  Google Scholar 

  • Nisi, B., Raco, B., & Dotsika, E. (2016). Groundwater contamination studies by environmental isotopes: a review. Handbook of Environmental Chemistry, 40, 115–150.

    Google Scholar 

  • NRDW (2013): National report on drinking water quality and supply in 2013. Published by Ministry of the Regional Development, Building and Municipal Economy of Ukraine, Kiev (in Ukrainian).

  • NRSE (2013): National report on the state of the environment in 2013. Published by Ministry of Ecology and Environment Protection of Ukraine, Kiev (in Ukrainian).

  • NSTU (2010): National standard on the drinking water quality for springs and wells (in Ukrainian).

  • Pastern–Zapata, E., Ledesma–Ruiz, R., Harter, T., Ramirez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi–tracer approach. Science of the Tot Environment, 470–471, 855–864.

    Article  Google Scholar 

  • Report (2007). Supplementary report to geological map of Ukraine, scale 1:200 000, sheets M-37-XIII (Belgorod), M-37-XIX (Kharkiv). Geological Survey of Ukraine. Printed in Kyiv (in Ukrainian).

  • Rolston, D.E., Fogg, G.E., Decker, D.L., & Louie, D.T. (1994). Nitrogen isotopes ratios of natural and anthropogenic nitrate in the subsurface. Proceedings of the XXV Congress of the International Association of Hydrogeologists. Adelaide, Australia, 21–25 November 1994.

  • Rossi, P., Marttila, H., Jyvasjarvi, J., Ala–aho, P., Isokangas, E., Muotka, T., et al. (2015). Environmental conditions of boreal springs explained by capture zone characteristics. Journal of Hydrology, 531, 992–1002.

    Article  Google Scholar 

  • Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73, 4145–4153.

    Article  CAS  Google Scholar 

  • Soares, M. I. M. (2000). Biological denitrification of groundwater. Water Air and Soil Pollution, 123, 183–193.

    Article  CAS  Google Scholar 

  • Schmidt, C. E., Robinson, R. S., Fields, L., & Nixon, S. W. (2016). Changes to nitrate isotopic composition of wastewater treatment effluent and rivers after upgrades to tertiary treatment in the Narragansett Bay watershed, RI. Marine Pollution Bulletin, 104(1–2), 61–69.

    Article  CAS  Google Scholar 

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a review. Journal of Environmental Quality, 22(3), 392–402.

    Article  CAS  Google Scholar 

  • Stoewer, M. M., Knöller, K., & Stumpp, C. (2015). Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers. Journal of Hydrology, 524, 753–767.

    Article  CAS  Google Scholar 

  • Urresti–Estala, B., Vadillo–Perez, I., Jimenez–Gavilan, P., Soler, A., Sanchez–Garcia, D., & Carrasco–Cantos, F. (2015). Application of stable isotopes (δ34S-SO4, δ18O-SO4, δ15N-NO3, δ18O-NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain). Science of the Tot Environment, 506–507, 46–57.

    Article  Google Scholar 

  • Van Meter, K. J., Basu, N. B., Veenstra, J. J., & Burras, C. I. (2016). The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters, 11, 035014.

    Article  Google Scholar 

  • Vasenko, O.G., Lungu, M.L., Iljevska, Y.A., & Klymov, O.V. (2006). The integrated field research of environmental conditions of water bodies of the Udy water basins (sub-basin of the Siverskiy Dinets River). Kharkiv: “Rayder” Publishing (in Ukrainian).

  • Vergeles, Y., Vystavna, Y., Ishchenko, A., Rybalka, I., Marchand, L., & Stolberg, F. (2015). Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecological Engineering, 83, 159–168.

    Article  Google Scholar 

  • Vitòria, L., Otero, N., Soler, A., & Canals, A. (2004). Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environmental Science and Technology, 38(12), 3254–3262.

    Article  Google Scholar 

  • Vogel, J. C., Talma, A. S., & Heaton, T. H. E. (1981). Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology, 50, 191–200.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Huneau, F., Motelica-Heino, M., Le Coustumer, P., Vergeles, Y., & Stolberg, F. (2012a). Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers. Environmental Earth Sciences, 65, 1715–1725.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Huneau, F., Schafer, J., Motelica-Heino, M., Blanc, G., Larrose, A., et al. (2012b). Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Applied Geochemistry, 27(10), 2077–2087.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Le Coustumer, P., & Huneau, F. (2013). Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters. Environmental Monitoring and Assessment, 185(4), 3581–3601.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Yakovlev, V., Diadin, D., Vergeles, Y., & Stolberg, F. (2015). Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environmental Earth Sciences, 74(1), 585–596.

    Article  CAS  Google Scholar 

  • Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: a review and case study. Water Research, 39, 3–16.

    Article  CAS  Google Scholar 

  • Wassenaar, I. L. (1995). Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15N and 18O in NO3−. Applied Geochemistry, 10, 391–405.

    Article  CAS  Google Scholar 

  • WHO (2008). Guidelines for drinking water quality (3rd edition) World Health Organization, Geneva.

  • WHO (2011). Nitrate and nitrite in drinking water. Background document for development of WHO guidelines for drinking water quality. Published in Geneva, Switzerland by WHO Press, 2011.

  • Widory, D., Petelet–Giraud, E., Brenot, A., Bronders, J., Tirez, K., & Boeckx, P. (2013). Improving the management of nitrate pollution in water by the use of isotope monitoring: the δ15N, δ18O and δ11B triptych. Isotopes in Environmental and Health Studies, 49(1), 29–47.

    Article  CAS  Google Scholar 

  • Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., et al. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface–and groundwater. Water Research, 43, 1159–1170.

    Article  CAS  Google Scholar 

  • Yakovlev, V., Vystavna, Y., Diadin, D., & Vergeles, Y. (2015). Nitrates in springs and rivers of East Ukraine: distribution, contamination and fluxes. Applied Geochemistry, 53, 71–78.

    Article  CAS  Google Scholar 

  • Yue, F. J., Li, S.-T., Liu, C.-Q., Zhao, Z.-Q., & Hu, S. (2013). Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China. Applied Geochemistry, 36, 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been carried out in the framework of the Research Project CRP F33020 “Environmental isotopes methods to assess water quality issues in rivers impacted by groundwater discharges” and CRP F33021 “Evaluation of human impacts on water balance and nutrients dynamics in the transboundary Russia/Ukraine river basin” funded partly by the International Atomic Energy Agency (IAEA) and the O.M. Beketov National University of Urban Economy in Kharkiv. Authors thank Ms. Janine Halder (IAEA) for her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Vystavna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vystavna, Y., Diadin, D., Grynenko, V. et al. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use. Environ Monit Assess 189, 509 (2017). https://doi.org/10.1007/s10661-017-6227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6227-5

Keywords

Navigation