Skip to main content

Advertisement

Log in

Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background

Environmental agencies have to take measures to either reduce discharges and emissions of nitrate or to remediate nitrate-polluted water bodies where the nitrate concentrations exceed threshold values. Isotope data can support the identification of nitrate pollution sources and natural attenuation processes of nitrate.

Review

This review article gives an overview of the information available to date regarding nitrate source apportionment in surface waters with the ambition to help improving future studies. Different isotope approaches in combination with physicochemical and hydrological data can successfully be used in source apportionment studies. A sampling strategy needs to be developed based on possible nitrate sources, hydrology and land use. Transformations, transport and mixing processes should also be considered as they can change the isotope composition of the original nitrate source.

Conclusion

Nitrate isotope data interpreted in combination with hydrological and chemical data provide valuable information on the nitrate pollution sources and on the processes nitrate has undergone during its retention and transport in the watershed. This information is useful for the development of an appropriate water management policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Mellilo MJ (1989) Nitrogen saturation in northern hardwood forest ecosystems. Bioscience 39:378–386

    Google Scholar 

  • Accoe F, Berglund M, Duta S, Hennessy C, Taylor P, Hoof KV, Smedt SD (2008) Source apportionment of nitrate pollution in surface water using stable isotopes of N and O in nitrate and B. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, EUR 23425 EN

  • Aleem MI, Hoch GE, Varner JE (1965) Water as the source of oxidant and reductant in bacterial chemosynthesis. Proc Natl Acad Sci USA 54:869–873

    CAS  Google Scholar 

  • Amberger A, Schmidt HL (1987) Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim Cosmochim Acta 51:2699–2705

    CAS  Google Scholar 

  • Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO 2 produced from NH3 by Nitrosomonas: 15N-NMR evidence. FEBS Lett 164:236–240

    CAS  Google Scholar 

  • Anisfeld SC, Barnes RT, Altabet MA, Wu T (2007) Isotopic apportionment of atmospheric and sewage nitrogen sources in two Connecticut rivers. Environ Sci Technol 41:6363–6369

    CAS  Google Scholar 

  • Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36:975–982

    CAS  Google Scholar 

  • Aravena R, Evans ML, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31:180–186

    CAS  Google Scholar 

  • Bach M, Fabis J, Frede HG (1997) Filterwirkung von Uferstreifen für Stoffeinträge in Gewässer in unterschiedlichen Landschaftsräumen, vol 28. DVWK, Bonn

    Google Scholar 

  • Baker MA, Dahm CN, Valett HM (2000) Anoxia, anaerobic metabolism and biogeochemistry of the stream-water ground-water interface. In: Jones JB, Mulholland PJ (eds) Streams and groundwaters. Academic, San Diego, pp 260–286

    Google Scholar 

  • Barnes RT, Raymond PA, Casciotti KL (2008) Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S. Biogeochemistry 90:15–27

    CAS  Google Scholar 

  • Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol Process 11:783–799

    Google Scholar 

  • Bassett RL (1995) Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol 29:2915–2922

    CAS  Google Scholar 

  • Battaglin WA, Kendall C, Chang CCY, Silva SR, Campbell DH (2001) Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997–98. Hydrol Process 15:1285–1300

    Google Scholar 

  • Bedard-Haughn A, Van Groenigen JW, Van Kessel C (2003) Tracing 15N through landscapes: potential uses and precautions. J Hydrol 272:175–190

    CAS  Google Scholar 

  • Billy C, Billen G, Sebilo M, Birgand F, Tournebize J (2010a) Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips. Soil Biol Biochem 42:108–117

    CAS  Google Scholar 

  • Billy C, Birgand F, Sebilo M, Billen G, Tournebize J, Kao C (2010b) Nitrate dynamics in artificially drained nested watersheds. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2008.09.007

  • Boehlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland. Water Resour Res 31:2319–2339

    Google Scholar 

  • Böttcher J, Strebel O, Voerkelius S, Schmidt HL (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424

    Google Scholar 

  • Boyer EW, Howarth RW (2002) The nitrogen cycle at regional to global scales. Kluwer, Dordrecht

    Google Scholar 

  • Bozau E, Knoeller K, Strauch G (2006) Nitrate degradation without 15N enrichment: a hydrochemical and isotopic study of a fractured rock aquifer including embedded lakes. Isot Environ Health Stud 42:251–260

    CAS  Google Scholar 

  • Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Process 13:2177–2190

    Google Scholar 

  • Buda AR, DeWalle DR (2009) Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrol Process 23:3292–3305

    CAS  Google Scholar 

  • Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO 3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:91–912

    Google Scholar 

  • Burns DA, Boyer EW, Elliott EM, Kendall C (2009) Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis. J Environ Qual 38:1149–1159

    CAS  Google Scholar 

  • Campbell DH, Kendall C, Chang CCY, Silva SR, Tonnessen KA (2002) Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res 38:1052. doi:10.1029/2001WR000294

    Google Scholar 

  • Casciotti KL, McIlvin M, Buchwald C (2010) Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr 55:753–762

    CAS  Google Scholar 

  • Cey EE, Rudolph DL, Aravena R, Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67

    CAS  Google Scholar 

  • Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885

    CAS  Google Scholar 

  • Chen F, Jia G, Chen J (2009) Nitrate sources and watershed denitrification inferred from nitrate dual isotopes in the Beijiang River, South China. Biogeochemistry 94:163–174

    Google Scholar 

  • Chetelat B, Gaillardet J (2005) Boron isotopes in the Seine River, France: a probe of anthropogenic contamination. Environ Sci Technol 39:2486–2493

    CAS  Google Scholar 

  • DeSimone LA, Howes BL (1996) Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge. Environ Sci Technol 30:1152–1162

    CAS  Google Scholar 

  • Deutsch B, Liskow I, Kahle P, Voss M (2005) Variations in the δ15N and δ18O values of nitrate in drainage water of two fertilized fields in Mecklenburg-Vorpommern (Germany). Aquat Sci 67:156–165

    CAS  Google Scholar 

  • Deutsch B, Kahle P, Voss M (2006a) Assessing the source of nitrate pollution in water using stable N and O isotopes. Agron Sustainable Dev 26:263–267

    CAS  Google Scholar 

  • Deutsch B, Mewes M, Liskow I, Voss M (2006b) Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org Geochem 37:1333–1342

    CAS  Google Scholar 

  • Deutsch B, Voss M, Fischer H (2009) Nitrogen transformation processes in the Elbe River: distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquat Sci Res Across Boundaries 71:228–237

    CAS  Google Scholar 

  • Diebel MW, Zanden MJV (2009) Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecol Appl 19:1127–1134

    Google Scholar 

  • Durka W, Schulze ED, Gehauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    CAS  Google Scholar 

  • EC (European Commission) (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community Action in the Field of Water Policy (Water Framework Directive). Off J Eur Communities L 327(22/12/2000):1–72

    Google Scholar 

  • EC (European Commission) (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Off J Eur Union L 164(25/6/2008):19–40

    Google Scholar 

  • EEC (1991a) Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Official Journal L 375(31/12/1991):0001–0008

    Google Scholar 

  • EEC (1991b) Council Directive 91/271/EEC of 21 May 1991 concerning Urban Waste-water Treatment (Urban Waste Water Treatment Directive). Official Journal L 135(30/05/1991):0040–0052

    Google Scholar 

  • Eisenhut S, Heumann KG, Vengosh A (1996) Determination of boron isotopic variations in aquatic systems with negative thermal ionization mass spectrometry as a tracer for anthropogenic influences. Fresenius’ J Anal Chem 354:903–909

    CAS  Google Scholar 

  • Finlay JC, Sterner RW, Kumar S (2007) Isotopic evidence for in-lake production of accumulating nitrate in lake superior. Ecol Appl 17:2323–2332

    Google Scholar 

  • Fukada T, Hiscock KM, Dennis PF (2004) A dual-isotope approach to the nitrogen hydrochemistry of an urban aquifer. Appl Geochem 19:709–719

    CAS  Google Scholar 

  • Gellenbeck DJ (1994) Isotopic composition and sources of nitrate in ground water from Western Salt River Valley, Arizona. US Geological Survey Water-Resources Investigations Report 94-4063

  • Ging PB, Lee RW, Silva SR (1996) Water chemistry of Shoal Creek and Waller Creek, Austin, Texas, and potential sources of nitrate. U.S. Geological Survey Water-Resources Investigation Paper 96-4167

  • Goodale C, Thomas S, Fredriksen G, Elliott E, Flinn K, Walter M (2009) Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry 93:197–218

    CAS  Google Scholar 

  • Granger J, Sigman DM, Needoba JA, Harrison PJ (2004) Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr 49:1763–1773

    CAS  Google Scholar 

  • Granger SJ, Heaton THE, Bol R, Bilotta GS, Butler P, Haygarth PM, Owens PN (2008) Using 15N and 18O to evaluate the sources and pathways of NO 3 in rainfall event discharge from drained agricultural grassland lysimeters at high temporal resolutions. Rapid Commun Mass Spectrom 22:1681–1689

    CAS  Google Scholar 

  • Haberhauer G, Gerzabek M, Krenn A (2002) Nitrate dynamics in an alpine forest site (Mühleggerköpfl) O and N stable isotope analysis in natural water samples. Environ Sci Pollut Res 9:37–41

    Google Scholar 

  • Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 84:51–66

    CAS  Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Hoegberg P (1997) Tansley Review No. 95. 15N natural abundance in soil–plant systems. New Phytol 137:179–203

    Google Scholar 

  • Hollocher TC (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a PON anhydride mechanism in oxidative phosphorylation. Arch Biochem Biophys 233:721–727

    CAS  Google Scholar 

  • Hubner H (1986) Isotope effects of nitrogen in the soil and biosphere. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 2b. The terrestrial environment. Elsevier, Amsterdam, pp 361–425

    Google Scholar 

  • Inamdar SP, Christopher SF, Mitchell MJ (2004) Export mechanisms for dissolved organic carbon and nitrate during summer storm events in a glaciated forested catchment in New York, USA. Hydrol Process 18:2651–2661

    Google Scholar 

  • Johannsen A, Dähnke K, Emeis K (2008) Isotopic composition of nitrate in five German rivers discharging into the North Sea. Org Geochem 39:1678–1689

    CAS  Google Scholar 

  • Kellman LM (2005) A study of tile drain nitrate—δ15N values as a tool for assessing nitrate sources in an agricultural region. Nutr Cycl Agroecosyst 71:131–137

    Google Scholar 

  • Kellman L, Hillaire-Marcel C (1998) Nitrate cycling in streams: using natural abundances of NO3–δ15N to measure in-situ denitrification. Biogeochemistry 43:273–292

    CAS  Google Scholar 

  • Kellman LM, Hillaire-Marcel C (2003) Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agric Ecosyst Environ 95:87–102

    CAS  Google Scholar 

  • Kendall C (1998) Tracing sources and cycling of nitrate in catchments. In: Kendall C, McDonnel JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 51–86

    Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Kendall C, Sklash MG, Bullen TD (1995) Isotope tracers of water and solute sources in catchments. In: Trudgill ST (ed) Solute modelling in catchment systems. Wiley, New York, pp 261–303

    Google Scholar 

  • Kendall C, Silva SR, Chang CCY, Burns DA, Campbell DH, Shanley JB (1996) Use of the δ18O and δ15N of nitrate to determine sources of nitrate in early spring runoff in forested catchments. In: Isotopes in Water Resources Management: Proceedings of a Symposium on Isotopes in Water Resources Management, 20–24 March 1995. International Atomic Energy Agency, Vienna, Series 1, pp 167–176

  • Kendall C, Elliott EM, Wankel SD (2008) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 375–449

    Google Scholar 

  • Koba K, Tokuchi N, Wada E, Nakajima T, Iwatsubo G (1997) Intermittent denitrification: the application of a 15N natural abundance method to a forested ecosystem. Geochim Cosmochim Acta 61:5043–5050

    CAS  Google Scholar 

  • Komor SC (1997) Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota. J Environ Qual 26:1212–1222

    CAS  Google Scholar 

  • Komor SC, Anderson HW (1993) Nitrogen isotopes as indicators of nitrate sources in Minnesota sand-plain aquifers: natural sources versus human pollution. J Hydrol 61:286–301

    Google Scholar 

  • Kool DM, Wrage N, Oenema O, Dolfing J, Van Groenigen JW (2007) Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO 3 and N2O: a review. Rapid Commun Mass Spectrom 21:3569–3578

    CAS  Google Scholar 

  • Lee K-S, Bong Y-S, Lee D, Kim Y, Kim K (2008) Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N–NO 3 and δ18O–NO 3 values. Sci Total Environ 395:117–124

    CAS  Google Scholar 

  • Leenhouts JM, Bassett RL, Maddock Iii T (1998) Utilization of intrinsic boron isotopes as Co-migrating tracers for identifying potential nitrate contamination sources. Ground Water 36:240–250

    CAS  Google Scholar 

  • Lefebvre S, Clement JC, Pinay G, Thenail C, Durand P, Marmonier P (2007) 15N-nitrate signature in low-order streams: effects of land cover and agricultural practices. Ecol Appl 17:2333–2346

    CAS  Google Scholar 

  • Lehmann MF, Reichert P, Bernasconi SM, Barbieri A, McKenzie JA (2003) Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochim Cosmochim Acta 67:2529–2542

    CAS  Google Scholar 

  • Letolle R (1980) Nitrogen-15 in the natural environment. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry: the terrestrial environment. Elsevier, Amsterdam, pp 407–433

    Google Scholar 

  • Mariotti A, Pierre D, Vedy JC, Bruckert S, Guillemot J (1980) The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). CATENA 7:293–300

    CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430

    CAS  Google Scholar 

  • Mariotti A, Landreau A, Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 52:1869–1878

    CAS  Google Scholar 

  • Mayer B, Bollwerk SM, Mansfeldt T, Huetter B, Veizer J (2001) The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim Cosmochim Acta 65:2743–2756

    CAS  Google Scholar 

  • Mayer B, Boyer EW, Goodale C, Jaworski NA, Van Breemen N, Howarth RW, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, Van Dam D, Hetling LJ, Nosal M, Paustian K (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry 57–58:171–197

    Google Scholar 

  • McMahon PB, Bohlke JK (2006) Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, High Plains, U.S.A. Environ Sci Technol 40:2965–2970

    CAS  Google Scholar 

  • Mengis M, Schiff SL, Harris M, English MC, Aravena R, Elgood RJ, MacLean A (1999) Multiple geochemical and isotopic approaches for assessing ground water NO3—elimination in a riparian zone. Ground Water 37:448–457

    CAS  Google Scholar 

  • Mengis M, Walther U, Bernasconi SM, Wehrli B (2001) Limitations of using δ18O for the source identification of nitrate in agricultural soils. Environ Sci Technol 35:1840–1844

    CAS  Google Scholar 

  • Michalski G, Scott Z, Kabiling M, Thiemens MH (2003) First measurements and modeling of Δ17O in atmospheric nitrate. Geophys Res Lett 30:1870

    Google Scholar 

  • Michalski G, Böhlke JK, Thiemens M (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta 68:4023–4038

    CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener R (eds) Stable isotopes in ecology. Blackwell Scientific, Oxford, pp 22–44

    Google Scholar 

  • Nisi B, Vaselli O, Buccianti A, Silva SR (2005) Sources of nitrate in the Arno River waters: constraints from δ15N and δ18O. GeoActa 4:13–24

    CAS  Google Scholar 

  • Oelmann Y, Kreutziger Y, Bol R, Wilcke W (2007a) Nitrate leaching in soil: tracing the NO 3 sources with the help of stable N and O isotopes. Soil Biol Biochem 39:3024–3033

    CAS  Google Scholar 

  • Oelmann Y, Kreutziger Y, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze E-D, Weisser WW, Wilcke W (2007b) Nitrogen and phosphorus budgets in experimental grasslands of variable diversity. J Environ Qual 36:396–407

    CAS  Google Scholar 

  • Ogrinc N, Markovics R, Kanduc T, Walter LM, Hamilton SK (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the River Danube. Appl Geochem 23:3685–3698

    CAS  Google Scholar 

  • Ohte N, Sebestyen SD, Shanley JB, Doctor DH, Kendall C, Wankel SD, Boyer EW (2004) Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophys Res Lett 31:L21506

    Google Scholar 

  • Panno SV, Hackley KC, Kelly WR, Hwang HH (2006) Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. J Environ Qual 35:495–504

    CAS  Google Scholar 

  • Panno SV, Kelly WR, Hackley KC, Hwang H-H, Martinsek AT (2008) Sources and fate of nitrate in the Illinois River Basin, Illinois. J Hydrol 359:174–188

    Google Scholar 

  • Pardo LH, Kendall C, Pett-Ridge J, Chang CCY (2004) Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 18:2699–2712

    Google Scholar 

  • Park J-H, Mitchell MJ, McHale PJ, Christopher SF, Meyers TP (2003) Impacts of changing climate and atmospheric deposition on N and S drainage losses from a forested watershed of the Adirondack Mountains, New York State. Glob Chang Biol 9:1602–1619

    Google Scholar 

  • Petitta M, Fracchiolla D, Aravena R, Barbieri M (2009) Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy. J Hydrol 372:124–135

    CAS  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Google Scholar 

  • Piatek KB, Mitchell MJ, Silva SR, Kendall C (2005) Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut 165:13–35

    CAS  Google Scholar 

  • Piatek KB, Christopher SF, Mitchell MJ (2009) Spatial and temporal dynamics of stream chemistry in a forested watershed. Hydrol Earth Syst Sci 13:423–439

    CAS  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Google Scholar 

  • Rock L, Mayer B (2004) Isotopic assessment of sources of surface water nitrate within the Oldman River Basin, Southern Alberta, Canada. Water Air Soil Pollut Focus 4:545–562

    CAS  Google Scholar 

  • Rock L, Mayer B (2006) Tracing nitrates and sulphates in river basins using isotope techniques. Water Sci Technol 53:209–217

    CAS  Google Scholar 

  • Schiff SL, Devito KJ, Elgood RJ, McCrindle PM, Spoelstra J, Dillon P (2002) Two adjacent forested catchments: dramatically different NO 3 export. Water Resour Res 38:1292

    Google Scholar 

  • Sebestyen SD, Boyer EW, Shanley JB, Kendall C, Doctor DH, Aiken GR, Ohte N (2008) Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest. Water Resour Res 44:W12410

    Google Scholar 

  • Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51

    CAS  Google Scholar 

  • Sebilo M, Billen G, Mayer B, Billiou D, Grably M, Garnier J, Mariotti A (2006) Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems 9:564–577

    CAS  Google Scholar 

  • Segal-Rozenhaimer M, Shavit U, Vengosh A, Gavrieli I, Farber E, Holtzman R, Mayer B, Shaviv A (2004) Sources and transformations of nitrogen compounds along the Lower Jordan River. J Environ Qual 33:1440–1451

    CAS  Google Scholar 

  • Seiler RL (2005) Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl Geochem 20:1626–1636

    CAS  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    CAS  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Shearer G, Kohl DH, Chien S (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci Soc Am J 42:899–902

    CAS  Google Scholar 

  • Sickman JO, Leydecker A, Chang CCY, Kendall C, Melack JM, Lucero DM, Schimel J (2003) Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry 64:1–24

    CAS  Google Scholar 

  • Silva SR, Ging PB, Lee RW, Ebbert JC, Tesoriero AJ, Inkpen EL (2002) Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments. Environ Forensics 3:125–130

    CAS  Google Scholar 

  • Snider DM, Spoelstra J, Schiff S, Venkiteswaran JJ (2010) Stable oxygen isotope ratios of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and temperate forest soils. Environ Sci Technol 44:5358–5364. doi:10.1021/es1002567

    CAS  Google Scholar 

  • Spoelstra J, Schiff SL, Elgood RJ, Semkin RG, Jeffries DS (2001) Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544

    CAS  Google Scholar 

  • Spoelstra J, Schiff SL, Hazlett PW, Jeffries DS, Semkin RG (2007) The isotopic composition of nitrate produced from nitrification in a hardwood forest floor. Geochim Cosmochim Acta 71:3757–3771

    CAS  Google Scholar 

  • Spruill TB, Showers WJ, Howe SS (2002) Application of classification-tree methods to identify nitrate sources in ground water. J Environ Qual 31:1538–1549

    CAS  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes in aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs advances in chemistry. American Chemical Society, Washington, pp 223–284

    Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Google Scholar 

  • Townsend-Small A, McCarthy MJ, Brandes JA, Yang L, Zhang L, Gardner WS (2007) Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers. Hydrobiologia 581:135–140

    CAS  Google Scholar 

  • Tsunogai U, Komatsu DD, Daita S, Abbas Kazemi G, Nakagawa F, Noguchi I, Zhang J (2009) Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in eastern Asia using Δ17O. Atmos Chem Phys Discuss 9:23073–23101

    Google Scholar 

  • Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol 28:1968–1974

    CAS  Google Scholar 

  • Vengosh A, Barth S, Heumann KG, Eisenhut S (1999) Boron isotopic composition of freshwater lakes from Central Europe and possible contamination sources. Acta Hydroch Hydrob 27:416–421

    CAS  Google Scholar 

  • Vitòria L, Soler A, Canals À, Otero N (2008) Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: example of Osona (NE Spain). Appl Geochem 23:3597–3611

    Google Scholar 

  • Voss M, Deutsch B, Elmgren R, Humborg C, Kuuppo P, Pastuszak M, Rolff C, Schulte U (2006) Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences 3:663–676

    CAS  Google Scholar 

  • Vought LBM, Dahl J, Pedersenm CL, Lacoursiere JO (1994) Nutrient retention in riparian ecotones. Ambio 23:342–348

    Google Scholar 

  • Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and18O in NO3. Appl Geochem 10:391–405

    CAS  Google Scholar 

  • Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40:4626–4632

    CAS  Google Scholar 

  • Widory D, Kloppmann W, Chery L, Bonnin J, Rochdi H, Guinamant JL (2004) Nitrate in groundwater: an isotopic multi-tracer approach. J Contam Hydrol 72:165–188

    CAS  Google Scholar 

  • Widory D, Petelet-Giraud E, Negrel P, Ladouche B (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39:539–548

    CAS  Google Scholar 

  • Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE (2001) 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol 252:174–188

    CAS  Google Scholar 

  • Xue D (2010) Personal communication. Nitrate isotope data of the project ‘Development and evaluation of a classification model to identify nitrate sources in surface water’. Laboratory of Applied Physical Chemistry—ISOFYS, Ghent University, Belgium (www.isofys.ugent.be). Project no. IWT-050664 Project funded by IWT Flanders, Belgium

  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170

    CAS  Google Scholar 

Download references

Acknowledgement

We thank the network ‘Isotopes for improved management of nitrate pollution in aqueous resources (INPAR)’ for discussing the content of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Berglund.

Additional information

Responsible Editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestler, A., Berglund, M., Accoe, F. et al. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environ Sci Pollut Res 18, 519–533 (2011). https://doi.org/10.1007/s11356-010-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0422-z

Keywords

Navigation