Skip to main content
Log in

Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Food safety is a global concern due to the increased use of pesticides in agriculture. In grapes, carbendazim is one of the frequently detected fungicides. However, it is amenable to biodegradation. In this study, we aimed to assess the degradation of carbendazim by four Bacillus subtilis strains, which had earlier shown potential for biocontrol of grape diseases. In liquid medium, each of the four strains, namely, DR-39, CS-126, TL-171, and TS-204, could utilize carbendazim as the sole carbon source. The half-life was minimized from 8.4 days in the uninoculated spiked control to 4.0–6.2 days by the four strains. In Thompson Seedless sprayed with carbendazim at 1.0 g L−1, the residue on grape berries in control was 0.44 mg kg−1 after 25 days of application, whereas in grapes treated with the four B. subtilis strains, the residues had decreased to 0.02 mg kg−1. The degradation kinetics showed low half-lives of 3.1 to 5.2 days in treated grapes as compared to 8.8 days in control. In inoculated soils, the half-lives were 5.9 to 7.6 days in autoclaved and 6.5 to 7.2 days in nonautoclaved soils as compared to 8.2 and 8.0 days in respective controls. The growth dynamics of these strains in all the three matrices was not affected by presence of carbendazim. Bacillus strains TS-204 and TL-171 showed higher degradation rate than the other two strains in all the three matrices and show promise for in situ biodegradation of carbendazim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arbeli, Z., & Fuentes, C. L. (2010). Microbial degradation of pesticides in tropical soils. In P. Dion (Ed.), Soil biology and agriculture in the tropics (pp. 251–274). Berlin: Springer.

    Chapter  Google Scholar 

  • Banerjee, K. (2005). Residue dynamics of carbendazim and mancozeb in grape (Vitisvinifera L.) berries. Toxicological & Environmental Chemistry, 87, 77–81.

  • Baude, F. J., Pease, H. L., & Holt, R. F. (1974). Fate of benomyl on field soil and turf. Journal of Agricultural and Food Chemistry, 22, 413–418.

    Article  CAS  Google Scholar 

  • Cycon, M., Wojcik, M., & Piotrowska-Seget, Z. (2011). Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodegradation, 22, 573–583.

    Article  CAS  Google Scholar 

  • E. U (2011). Regulations: Commission Regulation (EU) No 559/2011of 7 June 2011. Official Journal of the European Union. Available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri=OJ:L:2011:152:0001:0021:EN:PDF

  • Fang, H., Wang, Y., Gao, C., Yan, H., Dong, B., & Yu, Y. (2010). Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation, 21, 939–946.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations Rome (1992). Available on http://www.fao.org/fileadmin/templates/agphome/documents/pests_pesticides/jmpr/evaluation98/carbend.pdf viewing date: July. 12. 2013.

  • Gustafson, D. I., & Holden, L. R. (1990). Nonlinear pesticide dissipation in soil: a new model based on spatial variability. Environmental Science and Technology, 24, 1032–1038.

    Article  CAS  Google Scholar 

  • Helweg, A. (2006). Degradation and adsorption of carbendazim and 2-aminobenzimidazole in soil. Pesticide Science, 8, 71–78.

    Article  Google Scholar 

  • Holtmana, M. A., & Kobayashi, D. Y. (1997). Identification of Rhodococcuserythropolis isolates capable of degrading the fungicide carbendazim. Applied Microbiology and Biotechnology, 47, 578–582.

    Article  Google Scholar 

  • Lin, X., Hou, Z., Feng, Y., Zhao, S., & Ye, J. (2011). Isolation and characteristics of efficient carbendazim degradation bacterium. Advances in Biomedical Engineering, 1–2, 384–388.

    Google Scholar 

  • Mandal, S., Das, S., & Bhattacharyya, A. (2010). Dissipation study of thiophanate methyl residue in/on grapes (Vitis vinifera L.) in India. Bulletin of Environmental Contamination and Toxicology, 84, 592–595.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Awasthi, M. D., Ahuja, A. K., & Sharma, D. (1998). Persistence and dissipation of carbendazim residue in/on grape berries. Pesticide Research Journal, 10, 95–97.

    Google Scholar 

  • National Research Centre for Grapes (2013). Annexure 5. List of chemicals with CIB&RC label claim for use in grapes. Available from http://nrcgrapes.nic.in/zipfiles/Annexure%205.pdf.

  • Pandey, G., Dorrian, S. J., Russell, R. J., Brearley, C., Kotsonis, S., & Oakeshott, J. G. (2010). Cloning and biochemical characterization of a novel carbendazim (methyl-1H-benzimidazol-2-ylcarbamate)-hydrolyzing esterase from the newly isolated Nocardioides sp. strain SG-4G and its potential for use in enzymatic bioremediation. Applied and Environmental Microbiology, 76, 2940–2945.

    Article  CAS  Google Scholar 

  • Roberts, T. R., & Hutson, D. H. (1999). Benzimidazoles. In T. R. Roberts, D. H. Hutson, P. W. Lee, P. H. Nicholls, & J. R. Plimmer (Eds.), Metabolic pathways of agrochemicals: part 2: insecticides and fungicides (pp. 1105–1112). UK: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Rouchaud, J. P., Lhoest, G. J., Mercier, M. J., & Meyer, J. A. (1977). Metabolism of benomyl in carrot, strawberry and apple. Pesticide Science, 8, 23–30.

    Article  CAS  Google Scholar 

  • Salunkhe, V. P., Sawant, I. S., Banerjee, K., Rajguru, Y. R., Wadkar, P. N., Oulkar, D. P., Naik, D. G., & Sawant, S. D. (2013). Biodegradation of profenofos by Bacillussubtilis isolated from grapevines (Vitis vinifera). Journal of Agricultural and Food Chemistry, 61, 7195–7202.

    Article  CAS  Google Scholar 

  • Sarmah, A. K., & Close, M. E. (2009). Modelling the dissipation kinetics of six commonly used pesticides in two contrasting soils of New Zealand. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 44, 507–517.

    Article  CAS  Google Scholar 

  • Utture, S. C., Banerjee, K., Dasgupta, S., Patil, S. H., Jadhav, M. R., Wagh, S. S., et al. (2011). Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits. Journal of Agricultural and Food Chemistry, 59, 7866–7873.

    Article  CAS  Google Scholar 

  • Wang, K., Zhou, Q., Qi, J., & Le, L. (2011). Residues of high concentration carbendazim on plants in natural state. Plant Diseases and Pests, 2, 48–51.

    Google Scholar 

  • Wu, J., Wei, H., Sui, X., Lin, J., Wang, T., Fen, G., & Xue, J. (2010). Dynamics of carbendazim residue in Panax notoginseng and soil. Bulletin of Environmental Contamination and Toxicology, 84, 469–472.

    Article  CAS  Google Scholar 

  • Xu, J. L., Gu, X. Y., Shen, B., Wang, Z. C., Wang, K., & Li, S. P. (2006). Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6. Current Microbiology, 53, 72–76.

    Article  CAS  Google Scholar 

  • Yarden, O., Salomon, R., Katan, J., & Aharonson, N. (1990). Involvement of fungi and bacteria in enhanced and nonenhanced biodegradation of carbendazim and other benzimidazole compounds in soil. Canadian Journal of Microbiology, 36, 15–23.

    Article  CAS  Google Scholar 

  • Yu, Y., Chu, X., Pang, G., Xiang, Y., & Fang, H. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 21, 179–185.

    Article  CAS  Google Scholar 

  • Zhang, G. S., Jia, X. M., Cheng, T. F., Ma, X. H., & Zhao, Y. H. (2005). Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain. World Journal of Microbiology & Biotechnology, 21, 265–269.

    Article  Google Scholar 

  • Zhang, L., Qiao, X., & Ma, L. (2009). Influence of environmental factors on degradation of carbendazim by Bacillus pumilus strain NY97-1. International Journal of Environment and Pollution, 38, 309–317.

    Article  CAS  Google Scholar 

  • Zhang, X., Huang, Y., Harvey, P. R., Li, H., Ren, Y., Li, J., Wang, J., & Yang, H. (2013). Isolation and characterization of carbendazim-degradingRhodococcus erythropolisdjl-11. PLoS ONE, 8, e74810. doi:10.1371/journal.pone.0074810.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, for funding the research under the AMAAS Project and to Mrs. Manjusha Jadhav and Dr Dasharath Oulkar for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu S. Sawant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunkhe, V.P., Sawant, I.S., Banerjee, K. et al. Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environ Monit Assess 186, 8599–8610 (2014). https://doi.org/10.1007/s10661-014-4027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-4027-8

Keywords

Navigation